메뉴 건너뛰기




Volumn 24, Issue 10, 2017, Pages 866-869

Structures of the human mitochondrial ribosome in native states of assembly

Author keywords

[No Author keywords available]

Indexed keywords

ACYL CARRIER PROTEIN; LARGE SUBUNIT RIBOSOMAL RNA; MITOCHONDRIAL ASSEMBLY OF RIBOSOMAL LARGE SUBUNIT 1 PROTEIN; MITOCHONDRIAL PROTEIN; MITOCHONDRIAL PROTEIN L0R8F8; MITOCHONDRIAL RNA; RIBOSOME PROTEIN; RIBOSOME SILENCING FACTOR; UNCLASSIFIED DRUG;

EID: 85030765167     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.3464     Document Type: Article
Times cited : (125)

References (52)
  • 2
    • 84927947449 scopus 로고    scopus 로고
    • The complete structure of the 55S mammalian mitochondrial ribosome
    • Greber, B.J. et al. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348, 303-308 (2015).
    • (2015) Science , vol.348 , pp. 303-308
    • Greber, B.J.1
  • 3
    • 55249084867 scopus 로고    scopus 로고
    • Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly
    • Adilakshmi, T., Bellur, D.L. & Woodson, S.A. Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly. Nature 455, 1268-1272 (2008).
    • (2008) Nature , vol.455 , pp. 1268-1272
    • Adilakshmi, T.1    Bellur, D.L.2    Woodson, S.A.3
  • 4
    • 85002374064 scopus 로고    scopus 로고
    • Modular assembly of the bacterial large ribosomal subunit
    • Davis, J.H. et al. Modular assembly of the bacterial large ribosomal subunit. Cell 167, 1610-1622.e15 (2016).
    • (2016) Cell , vol.167 , pp. 1610e15-1610e15
    • Davis, J.H.1
  • 5
    • 84897527933 scopus 로고    scopus 로고
    • Initial steps in RNA processing and ribosome assembly occur at mitochondrial DNA nucleoids
    • Bogenhagen, D.F., Martin, D.W. & Koller, A. Initial steps in RNA processing and ribosome assembly occur at mitochondrial DNA nucleoids. Cell Metab. 19, 618-629 (2014).
    • (2014) Cell Metab. , vol.19 , pp. 618-629
    • Bogenhagen, D.F.1    Martin, D.W.2    Koller, A.3
  • 8
    • 84931280756 scopus 로고    scopus 로고
    • Discovery of a small molecule that inhibits bacterial ribosome biogenesis
    • Stokes, J.M., Davis, J.H., Mangat, C.S., Williamson, J.R. & Brown, E.D. Discovery of a small molecule that inhibits bacterial ribosome biogenesis. eLife 3, e03574 (2014).
    • (2014) ELife , vol.3 , pp. e03574
    • Stokes, J.M.1    Davis, J.H.2    Mangat, C.S.3    Williamson, J.R.4    Brown, E.D.5
  • 9
    • 0037109074 scopus 로고    scopus 로고
    • Structure and function in rhodopsin: High-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line
    • Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419-13424 (2002).
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 13419-13424
    • Reeves, P.J.1    Callewaert, N.2    Contreras, R.3    Khorana, H.G.4
  • 10
    • 84909594483 scopus 로고    scopus 로고
    • Structure of the large ribosomal subunit from human mitochondria
    • Brown, A. et al. Structure of the large ribosomal subunit from human mitochondria. Science 346, 718-722 (2014).
    • (2014) Science , vol.346 , pp. 718-722
    • Brown, A.1
  • 11
    • 84881491558 scopus 로고    scopus 로고
    • Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit
    • Li, N. et al. Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. Nucleic Acids Res. 41, 7073-7083 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. 7073-7083
    • Li, N.1
  • 12
    • 84899018786 scopus 로고    scopus 로고
    • Functional domains of the 50S subunit mature late in the assembly process
    • Jomaa, A. et al. Functional domains of the 50S subunit mature late in the assembly process. Nucleic Acids Res. 42, 3419-3435 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. 3419-3435
    • Jomaa, A.1
  • 13
    • 27644480836 scopus 로고    scopus 로고
    • A small protein unique to bacteria organizes rRNA tertiary structure over an extensive region of the 50 S ribosomal subunit
    • Maeder, C. & Draper, D.E. A small protein unique to bacteria organizes rRNA tertiary structure over an extensive region of the 50 S ribosomal subunit. J. Mol. Biol. 354, 436-446 (2005).
    • (2005) J. Mol. Biol. , vol.354 , pp. 436-446
    • Maeder, C.1    Draper, D.E.2
  • 14
    • 84941117035 scopus 로고    scopus 로고
    • Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly
    • Zhang, X. et al. Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly. Nucleic Acids Res. 42, 13430-13439 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. 13430-13439
    • Zhang, X.1
  • 15
    • 0019887180 scopus 로고
    • Methylated regions of hamster mitochondrial ribosomal RNA: Structural and functional correlates
    • Baer, R.J. & Dubin, D.T. Methylated regions of hamster mitochondrial ribosomal RNA: structural and functional correlates. Nucleic Acids Res. 9, 323-337 (1981).
    • (1981) Nucleic Acids Res. , vol.9 , pp. 323-337
    • Baer, R.J.1    Dubin, D.T.2
  • 16
    • 84991746890 scopus 로고    scopus 로고
    • Mitochondrial 16S rRNA is methylated by tRNA methyltransferase TRMT61B in all vertebrates
    • Bar-Yaacov, D. et al. Mitochondrial 16S rRNA is methylated by tRNA methyltransferase TRMT61B in all vertebrates. PLoS Biol. 14, e1002557 (2016).
    • (2016) PLoS Biol. , vol.14 , pp. e1002557
    • Bar-Yaacov, D.1
  • 17
    • 0031581856 scopus 로고    scopus 로고
    • Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts
    • Ofengand, J. & Bakin, A. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 266, 246-268 (1997).
    • (1997) J. Mol. Biol. , vol.266 , pp. 246-268
    • Ofengand, J.1    Bakin, A.2
  • 18
    • 84864585896 scopus 로고    scopus 로고
    • RsfA (YbeB) proteins are conserved ribosomal silencing factors
    • Häuser, R. et al. RsfA (YbeB) proteins are conserved ribosomal silencing factors. PLoS Genet. 8, e1002815 (2012).
    • (2012) PLoS Genet. , vol.8 , pp. e1002815
    • Häuser, R.1
  • 19
    • 84873332767 scopus 로고    scopus 로고
    • The conserved interaction of C7orf30 with MRPL14 promotes biogenesis of the mitochondrial large ribosomal subunit and mitochondrial translation
    • Fung, S., Nishimura, T., Sasarman, F. & Shoubridge, E.A. The conserved interaction of C7orf30 with MRPL14 promotes biogenesis of the mitochondrial large ribosomal subunit and mitochondrial translation. Mol. Biol. Cell 24, 184-193 (2013).
    • (2013) Mol. Biol. Cell , vol.24 , pp. 184-193
    • Fung, S.1    Nishimura, T.2    Sasarman, F.3    Shoubridge, E.A.4
  • 20
    • 84943665688 scopus 로고    scopus 로고
    • Structure of ribosomal silencing factor bound to mycobacterium tuberculosis ribosome
    • Li, X. et al. Structure of ribosomal silencing factor bound to mycobacterium tuberculosis ribosome. Structure 23, 1858-1865 (2015).
    • (2015) Structure , vol.23 , pp. 1858-1865
    • Li, X.1
  • 21
    • 84861392482 scopus 로고    scopus 로고
    • C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome
    • Rorbach, J., Gammage, P.A. & Minczuk, M. C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucleic Acids Res. 40, 4097-4109 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 4097-4109
    • Rorbach, J.1    Gammage, P.A.2    Minczuk, M.3
  • 22
    • 84897000112 scopus 로고    scopus 로고
    • Structure of the yeast mitochondrial large ribosomal subunit
    • Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485-1489 (2014).
    • (2014) Science , vol.343 , pp. 1485-1489
    • Amunts, A.1
  • 23
    • 84921777915 scopus 로고    scopus 로고
    • Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions
    • Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr. 71, 136-153 (2015).
    • (2015) Acta Crystallogr. D Biol. Crystallogr. , vol.71 , pp. 136-153
    • Brown, A.1
  • 24
    • 24044496587 scopus 로고    scopus 로고
    • Mammalian mitochondria contain a soluble acyl carrier protein
    • Cronan, J.E., Fearnley, I.M. & Walker, J.E. Mammalian mitochondria contain a soluble acyl carrier protein. FEBS Lett. 579, 4892-4896 (2005).
    • (2005) FEBS Lett. , vol.579 , pp. 4892-4896
    • Cronan, J.E.1    Fearnley, I.M.2    Walker, J.E.3
  • 25
    • 84942879598 scopus 로고    scopus 로고
    • Structure of subcomplex I? Of mammalian respiratory complex i leads to new supernumerary subunit assignments
    • Zhu, J. et al. Structure of subcomplex I? of mammalian respiratory complex I leads to new supernumerary subunit assignments. Proc. Natl. Acad. Sci. USA 112, 12087-12092 (2015).
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 12087-12092
    • Zhu, J.1
  • 26
    • 84983442599 scopus 로고    scopus 로고
    • Structure of mammalian respiratory complex i
    • Zhu, J., Vinothkumar, K.R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354-358 (2016).
    • (2016) Nature , vol.536 , pp. 354-358
    • Zhu, J.1    Vinothkumar, K.R.2    Hirst, J.3
  • 27
    • 84990999604 scopus 로고    scopus 로고
    • Atomic structure of the entire mammalian mitochondrial complex i
    • Fiedorczuk, K. et al. Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406-410 (2016).
    • (2016) Nature , vol.538 , pp. 406-410
    • Fiedorczuk, K.1
  • 28
    • 84996773946 scopus 로고    scopus 로고
    • Translation of 5? Leaders is pervasive in genes resistant to eIF2 repression
    • Andreev, D.E. et al. Translation of 5? leaders is pervasive in genes resistant to eIF2 repression. eLife 4, e03971 (2015).
    • (2015) ELife , vol.4 , pp. e03971
    • Andreev, D.E.1
  • 29
    • 84900475826 scopus 로고    scopus 로고
    • The chain-flipping mechanism of ACP (acyl carrier protein)-dependent enzymes appears universal
    • Cronan, J.E. The chain-flipping mechanism of ACP (acyl carrier protein)-dependent enzymes appears universal. Biochem. J. 460, 157-163 (2014).
    • (2014) Biochem. J. , vol.460 , pp. 157-163
    • Cronan, J.E.1
  • 30
    • 84983593773 scopus 로고    scopus 로고
    • The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis
    • Van Vranken, J.G. et al. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. eLife 5, e17828 (2016).
    • (2016) ELife , vol.5 , pp. e17828
    • Van Vranken, J.G.1
  • 31
    • 84895735383 scopus 로고    scopus 로고
    • Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery
    • Maio, N. et al. Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metab. 19, 445-457 (2014).
    • (2014) Cell Metab. , vol.19 , pp. 445-457
    • Maio, N.1
  • 32
    • 81555219350 scopus 로고    scopus 로고
    • Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6
    • Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S. & Ban, N. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334, 941-948 (2011).
    • (2011) Science , vol.334 , pp. 941-948
    • Klinge, S.1    Voigts-Hoffmann, F.2    Leibundgut, M.3    Arpagaus, S.4    Ban, N.5
  • 33
    • 84947906446 scopus 로고    scopus 로고
    • Mechanism of eIF6 release from the nascent 60S ribosomal subunit
    • Weis, F. et al. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat. Struct. Mol. Biol. 22, 914-919 (2015).
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 914-919
    • Weis, F.1
  • 34
    • 84880848354 scopus 로고    scopus 로고
    • Electron counting and beam-induced motion correction enable nearatomic-resolution single-particle cryo-EM
    • Li, X. et al. Electron counting and beam-induced motion correction enable nearatomic-resolution single-particle cryo-EM. Nat. Methods 10, 584-590 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 584-590
    • Li, X.1
  • 35
    • 84955216953 scopus 로고    scopus 로고
    • Gctf: Real-time CTF determination and correction
    • Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1-12 (2016).
    • (2016) J. Struct. Biol. , vol.193 , pp. 1-12
    • Zhang, K.1
  • 36
    • 85009208040 scopus 로고    scopus 로고
    • Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2
    • Kimanius, D., Forsberg, B.O., Scheres, S.H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).
    • (2016) ELife , vol.5 , pp. e18722
    • Kimanius, D.1    Forsberg, B.O.2    Scheres, S.H.3    Lindahl, E.4
  • 37
    • 84920942671 scopus 로고    scopus 로고
    • Beam-induced motion correction for sub-megadalton cryo-EM particles
    • Scheres, S.H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014).
    • (2014) ELife , vol.3 , pp. e03665
    • Scheres, S.H.1
  • 38
    • 84955307962 scopus 로고    scopus 로고
    • Sampling the conformational space of the catalytic subunit of human ?-secretase
    • Bai, X.-C., Rajendra, E., Yang, G., Shi, Y. & Scheres, S.H. Sampling the conformational space of the catalytic subunit of human ?-secretase. eLife 4, e11182 (2015).
    • (2015) ELife , vol.4 , pp. e11182
    • Bai, X.-C.1    Rajendra, E.2    Yang, G.3    Shi, Y.4    Scheres, S.H.5
  • 39
    • 85014129582 scopus 로고    scopus 로고
    • MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy
    • Zheng, S.Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331-332 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 331-332
    • Zheng, S.Q.1
  • 40
    • 0142042865 scopus 로고    scopus 로고
    • Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy
    • Rosenthal, P.B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745 (2003).
    • (2003) J. Mol. Biol. , vol.333 , pp. 721-745
    • Rosenthal, P.B.1    Henderson, R.2
  • 41
    • 84894623755 scopus 로고    scopus 로고
    • Quantifying the local resolution of cryo-EM density maps
    • Kucukelbir, A., Sigworth, F.J. & Tagare, H.D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63-65 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 63-65
    • Kucukelbir, A.1    Sigworth, F.J.2    Tagare, H.D.3
  • 42
    • 4444221565 scopus 로고    scopus 로고
    • UCSF Chimera: A visualization system for exploratory research and analysis
    • Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 (2004).
    • (2004) J. Comput. Chem. , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1
  • 43
    • 39449115394 scopus 로고    scopus 로고
    • I-TASSER server for protein 3D structure prediction
    • Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics http://dx.doi.org/10.1186/1471-2105-9-40 (2008).
    • (2008) BMC Bioinformatics
    • Zhang, Y.1
  • 46
    • 57449096570 scopus 로고    scopus 로고
    • Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex
    • Cryle, M.J. & Schlichting, I. Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex. Proc. Natl. Acad. Sci. USA 105, 15696-15701 (2008).
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 15696-15701
    • Cryle, M.J.1    Schlichting, I.2
  • 48
    • 74549178560 scopus 로고    scopus 로고
    • MolProbity: All-atom structure validation for macromolecular crystallography
    • Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21 (2010).
    • (2010) Acta Crystallogr. D Biol. Crystallogr. , vol.66 , pp. 12-21
    • Chen, V.B.1
  • 49
    • 84959080555 scopus 로고    scopus 로고
    • EMRinger: Side chain-directed model and map validation for 3D cryo-electron microscopy
    • Barad, B.A. et al. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943-946 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 943-946
    • Barad, B.A.1
  • 50
    • 82855163967 scopus 로고    scopus 로고
    • Protein 3D structure computed from evolutionary sequence variation
    • Marks, D.S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS One 6, e28766 (2011).
    • (2011) PLoS One , vol.6 , pp. e28766
    • Marks, D.S.1
  • 51
    • 84963558331 scopus 로고    scopus 로고
    • 3D RNA and functional interactions from evolutionary couplings
    • Weinreb, C. et al. 3D RNA and functional interactions from evolutionary couplings. Cell 165, 963-975 (2016).
    • (2016) Cell , vol.165 , pp. 963-975
    • Weinreb, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.