-
1
-
-
84924370967
-
2O photocathodes using a molecular catalyst
-
2O photocathodes using a molecular catalyst. Energy Environ. Sci. 8, 855–861 (2015).
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 855-861
-
-
Schreier, M.1
-
3
-
-
84976584349
-
2 on a silver electrode
-
2 on a silver electrode. J. Am. Chem. Soc. 138, 7820–7823 (2016).
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 7820-7823
-
-
Lau, G.P.S.1
-
4
-
-
84952683317
-
Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane
-
Zhang, S. et al. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proc. Natl Acad. Sci. USA 112, 15809–15814 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 15809-15814
-
-
Zhang, S.1
-
5
-
-
84929011884
-
Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts
-
Ren, D. et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015).
-
(2015)
ACS Catal
, vol.5
, pp. 2814-2821
-
-
Ren, D.1
-
6
-
-
84890823442
-
A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
-
Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 631-675
-
-
Qiao, J.1
Liu, Y.2
Hong, F.3
Zhang, J.4
-
7
-
-
84860385434
-
New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
-
Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 7050-7059
-
-
Kuhl, K.P.1
Cave, E.R.2
Abram, D.N.3
Jaramillo, T.F.4
-
8
-
-
84907921289
-
Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces
-
Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 14107-14113
-
-
Kuhl, K.P.1
-
9
-
-
84870930796
-
2 reduction at very low overpotential on oxide-derived Au nanoparticles
-
2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 19969-19972
-
-
Chen, Y.1
Li, C.W.2
Kanan, M.W.3
-
11
-
-
84927951052
-
Pd-catalyzed electrohydrogenation of carbon dioxide to formate: High mass activity at low overpotential and identification of the deactivation pathway
-
Min, X. & Kanan, M. W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J. Am. Chem. Soc. 137, 4701–4708 (2015).
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 4701-4708
-
-
Min, X.1
Kanan, M.W.2
-
12
-
-
84955248900
-
A selective and efficient electrocatalyst for carbon dioxide reduction
-
Lu, Q. et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 3242
-
-
Lu, Q.1
-
14
-
-
84879376756
-
2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst
-
2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J. Am. Chem. Soc. 135, 8798–8801 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 8798-8801
-
-
Dimeglio, J.L.1
Rosenthal, J.2
-
19
-
-
84940995477
-
Impurity ion complexation enhances carbon dioxide reduction catalysis
-
Wuttig, A. & Surendranath, Y. Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal. 5, 4479–4484 (2015).
-
(2015)
ACS Catal
, vol.5
, pp. 4479-4484
-
-
Wuttig, A.1
Surendranath, Y.2
-
20
-
-
84953221918
-
2 reduction activity
-
2 reduction activity. ACS Catal. 6, 202–209 (2016).
-
(2016)
ACS Catal
, vol.6
, pp. 202-209
-
-
Lum, Y.1
-
23
-
-
84863012843
-
2 reduction efficiency on tin electrodes and enhanced activity for Tin/Tin oxide thin-film catalysts
-
2 reduction efficiency on tin electrodes and enhanced activity for Tin/Tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986–1989 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 1986-1989
-
-
Chen, Y.1
Kanan, M.W.2
-
24
-
-
84893811402
-
Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate
-
Zhang, S., Kang, P. & Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014).
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 1734-1737
-
-
Zhang, S.1
Kang, P.2
Meyer, T.J.3
-
25
-
-
84899486343
-
Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
-
Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).
-
(2014)
Nature
, vol.508
, pp. 504-507
-
-
Li, C.W.1
Ciston, J.2
Kanan, M.W.3
-
26
-
-
84939239351
-
Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts
-
Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 9808-9811
-
-
Verdaguer-Casadevall, A.1
-
27
-
-
15744396507
-
Trends in the exchange current for hydrogen evolution
-
Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).
-
(2005)
J. Electrochem. Soc.
, vol.152
, pp. J23
-
-
Nørskov, J.K.1
-
28
-
-
84966738379
-
2 reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy
-
2 reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. J. Phys. Chem. Lett. 7, 1466–1470 (2016).
-
(2016)
J. Phys. Chem. Lett.
, vol.7
, pp. 1466-1470
-
-
Eilert, A.1
Roberts, F.S.2
Friebel, D.3
Nilsson, A.4
-
30
-
-
84977151003
-
Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene
-
Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).
-
(2016)
Nat. Commun.
, vol.7
-
-
Mistry, H.1
-
33
-
-
84964677903
-
In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions
-
Liu, X., Cui, S., Qian, M., Sun, Z. & Du, P. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions. Chem. Commun. 52, 5546–5549 (2016).
-
(2016)
Chem. Commun.
, vol.52
, pp. 5546-5549
-
-
Liu, X.1
Cui, S.2
Qian, M.3
Sun, Z.4
Du, P.5
-
34
-
-
84955498335
-
Self-supported copper oxide electrocatalyst for water oxidation at low overpotential and confirmation of its robustness by Cu K-edge X-ray absorption spectroscopy
-
Liu, X. et al. Self-supported copper oxide electrocatalyst for water oxidation at low overpotential and confirmation of its robustness by Cu K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 120, 831–840 (2016).
-
(2016)
J. Phys. Chem. C
, vol.120
, pp. 831-840
-
-
Liu, X.1
-
35
-
-
84902458398
-
Nanostructured copper oxide electrodeposited from copper(II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction
-
Liu, X. et al. Nanostructured copper oxide electrodeposited from copper(II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochem. Commun. 46, 1–4 (2014).
-
(2014)
Electrochem. Commun.
, vol.46
, pp. 1-4
-
-
Liu, X.1
-
36
-
-
84973103239
-
Bipolar membrane-assisted solar water splitting in optimal pH
-
Luo, J. et al. Bipolar membrane-assisted solar water splitting in optimal pH. Adv. Energy Mater. 6, 1600100 (2016).
-
(2016)
Adv. Energy Mater.
, vol.6
-
-
Luo, J.1
-
37
-
-
84906813469
-
Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells
-
Vargas-Barbosa, N. M., Geise, G. M., Hickner, M. A. & Mallouk, T. E. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells. ChemSusChem 7, 3017–3020 (2014).
-
(2014)
Chemsuschem
, vol.7
, pp. 3017-3020
-
-
Vargas-Barbosa, N.M.1
Geise, G.M.2
Hickner, M.A.3
Mallouk, T.E.4
-
38
-
-
84942342353
-
Photo-assisted water splitting with bipolar membrane induced pH gradients for practical solar fuel devices
-
Vermaas, D. A., Sassenburg, M. & Smith, W. A. Photo-assisted water splitting with bipolar membrane induced pH gradients for practical solar fuel devices. J. Mater Chem. A 3, 19556–19562 (2015).
-
(2015)
J. Mater Chem. A
, vol.3
, pp. 19556-19562
-
-
Vermaas, D.A.1
Sassenburg, M.2
Smith, W.A.3
-
39
-
-
84967190305
-
A stabilized, intrinsically safe, 10% efficient, solar-driven water-splitting cell incorporating earth-abundant electrocatalysts with steady-state PH gradients and product separation enabled by a bipolar membrane
-
Sun, K. et al. A stabilized, intrinsically safe, 10% efficient, solar-driven water-splitting cell incorporating earth-abundant electrocatalysts with steady-state PH gradients and product separation enabled by a bipolar membrane. Adv. Energy Mater. 6, 1600379 (2016).
-
(2016)
Adv. Energy Mater.
, vol.6
-
-
Sun, K.1
-
40
-
-
84931275466
-
2 using perovskite photovoltaics
-
2 using perovskite photovoltaics. Nat. Commun. 6, 7326 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 7326
-
-
Schreier, M.1
-
41
-
-
84924235965
-
Catalyst design with atomic layer deposition
-
O’Neill, B. J. et al. Catalyst design with atomic layer deposition. ACS Catal. 5, 1804–1825 (2015).
-
(2015)
ACS Catal
, vol.5
, pp. 1804-1825
-
-
O’Neill, B.J.1
-
42
-
-
0037079618
-
The Fischer–Tropsch process: 1950–2000
-
Dry, M. E. The Fischer–Tropsch process: 1950–2000. Catal. Today 71, 227–241 (2002).
-
(2002)
Catal. Today
, vol.71
, pp. 227-241
-
-
Dry, M.E.1
-
44
-
-
84960486352
-
2O nanowire photocathodes for efficient and durable solar water splitting
-
2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 16, 1848–1857 (2016).
-
(2016)
Nano Lett
, vol.16
, pp. 1848-1857
-
-
Luo, J.1
-
45
-
-
84952019608
-
Low-temperature atomic layer deposition of crystalline and photoactive ultrathin hematite films for solar water splitting
-
Steier, L. et al. Low-temperature atomic layer deposition of crystalline and photoactive ultrathin hematite films for solar water splitting. ACS Nano 9, 11775–11783 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 11775-11783
-
-
Steier, L.1
-
46
-
-
0039314254
-
Infrared absorption and emission spectra of carbon monoxide in the region from 4 to 6 microns
-
Tidwell, E. K. P., Blaine, L. R. & Eugene, D. Infrared absorption and emission spectra of carbon monoxide in the region from 4 to 6 microns. J. Res. Natl Bur. Stand. 55, 183–189 (1955).
-
(1955)
J. Res. Natl Bur. Stand.
, vol.55
, pp. 183-189
-
-
Tidwell, E.K.P.1
Blaine, L.R.2
Eugene, D.3
|