메뉴 건너뛰기




Volumn 33, Issue 18, 2017, Pages 2829-2836

A fast and exhaustive method for heterogeneity and epistasis analysis based on multi-objective optimization

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BAYES THEOREM; BIOLOGICAL MODEL; BIOLOGY; ENTROPY; EPISTASIS; GENETIC HETEROGENEITY; PROCEDURES; REPRODUCIBILITY;

EID: 85029816699     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx339     Document Type: Article
Times cited : (32)

References (18)
  • 1
    • 85015918233 scopus 로고    scopus 로고
    • KNN-MDR: A learning approach for improving interactions mapping performances in genome wide association studies
    • Abo,A.S. and Farnir,F. (2017) KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies. BMC Bioinformatics, 18, 184.
    • (2017) BMC Bioinformatics , vol.18 , pp. 184
    • Abo, A.S.1    Farnir, F.2
  • 2
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGAII
    • Deb,K. et al. (2002) A fast and elitist multiobjective genetic algorithm: NSGAII. IEEE T. Evolut. Comput., 6, 182-197.
    • (2002) IEEE T. Evolut. Comput. , vol.6 , pp. 182-197
    • Deb, K.1
  • 3
    • 48249134004 scopus 로고    scopus 로고
    • Analysis of heterogeneity and epistasis in physiological mixed populations by combined structural equation modelling and latent class analysis
    • Fenger,M. et al. (2008) Analysis of heterogeneity and epistasis in physiological mixed populations by combined structural equation modelling and latent class analysis. BMC Genet., 9, 43.
    • (2008) BMC Genet. , vol.9 , pp. 43
    • Fenger, M.1
  • 4
    • 84879800390 scopus 로고    scopus 로고
    • Association of progesterone receptor gene (PGR) variants and breast cancer risk in African American women
    • Gabriel,C.A. et al. (2013) Association of progesterone receptor gene (PGR) variants and breast cancer risk in African American women. Breast Cancer Res. Treat., 139, 833-843.
    • (2013) Breast Cancer Res. Treat. , vol.139 , pp. 833-843
    • Gabriel, C.A.1
  • 5
    • 84978640092 scopus 로고    scopus 로고
    • Parallel pairwise epistasis detection on heterogeneous computing architectures
    • Gonzalez-Domnguez,J. et al. (2015) Parallel pairwise epistasis detection on heterogeneous computing architectures. IEEE T Parall. Distr., 27, 2329-2340.
    • (2015) IEEE T Parall. Distr. , vol.27 , pp. 2329-2340
    • Gonzalez-Domnguez, J.1
  • 6
    • 79954988537 scopus 로고    scopus 로고
    • Learning genetic epistasis using Bayesian network scoring criteria
    • Jiang,X. et al. (2011) Learning genetic epistasis using Bayesian network scoring criteria. BMC Bioinformatics, 12, 89.
    • (2011) BMC Bioinformatics , vol.12 , pp. 89
    • Jiang, X.1
  • 7
    • 84928987535 scopus 로고    scopus 로고
    • MACOED: A multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies
    • Jing,P.J. and Shen,H.B. (2015) MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies. Bioinformatics, 31, 634-641.
    • (2015) Bioinformatics , vol.31 , pp. 634-641
    • Jing, P.J.1    Shen, H.B.2
  • 8
    • 33745599582 scopus 로고    scopus 로고
    • A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility
    • Moore,J.H. et al. (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol., 241, 252-261.
    • (2006) J. Theor. Biol. , vol.241 , pp. 252-261
    • Moore, J.H.1
  • 9
    • 77949497074 scopus 로고    scopus 로고
    • Bioinformatics challenges for genome-wide association studies
    • Moore,J.H. et al. (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics. 26, 445-455.
    • (2010) Bioinformatics. , vol.26 , pp. 445-455
    • Moore, J.H.1
  • 10
    • 85014119857 scopus 로고    scopus 로고
    • Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis
    • Skwark,M.J. et al. (2017) Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet., 13, e1006508.
    • (2017) PLoS Genet. , vol.13 , pp. e1006508
    • Skwark, M.J.1
  • 11
    • 84962141594 scopus 로고    scopus 로고
    • FHSA-SED: Two-locus model detection for genome-wide association study with harmony search algorithm
    • Tuo,S. et al. (2016) FHSA-SED: two-locus model detection for genome-wide association study with harmony search algorithm. Plos One, 11, e0150669.
    • (2016) Plos One , vol.11 , pp. e0150669
    • Tuo, S.1
  • 12
    • 84866792294 scopus 로고    scopus 로고
    • GAMETES: A fast, direct algorithm for generating pure, strict, epistaticmodelswith random architectures
    • Urbanowicz,R.J. et al. (2012) GAMETES: a fast, direct algorithm for generating pure, strict, epistaticmodelswith random architectures. BioDataMin., 5, 16.
    • (2012) BioDataMin. , vol.5 , pp. 16
    • Urbanowicz, R.J.1
  • 13
    • 84882384758 scopus 로고    scopus 로고
    • Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: A learning classifier system approach
    • Urbanowicz,R.J. et al. (2013) Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier system approach. J. Am. Med. Inform. Assoc., 20, 603-612.
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , pp. 603-612
    • Urbanowicz, R.J.1
  • 14
    • 85020664804 scopus 로고    scopus 로고
    • High-performance epistasis detection in quantitative trait GWAS
    • Weeks,N.T. et al. (2016) High-performance epistasis detection in quantitative trait GWAS. Int. J. High Perform. C, 1-16.
    • (2016) Int. J. High Perform. C , pp. 1-16
    • Weeks, N.T.1
  • 15
    • 62549115747 scopus 로고    scopus 로고
    • Genome-wide association analysis by lasso penalized logistic regression
    • Wu,T.T. et al. (2009) Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics, 25, 714-721.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.T.1
  • 16
    • 84855175318 scopus 로고    scopus 로고
    • Detecting genome-wide epistases based on the clustering of relatively frequent items
    • Xie,M. et al. (2012) Detecting genome-wide epistases based on the clustering of relatively frequent items. Bioinformatics, 28, 5-12.
    • (2012) Bioinformatics , vol.28 , pp. 5-12
    • Xie, M.1
  • 17
    • 84893405040 scopus 로고    scopus 로고
    • Evaluation of breast cancer susceptibility using improved genetic algorithms to generate genotype SNP barcodes
    • Yang,C.H. et al. (2013) Evaluation of breast cancer susceptibility using improved genetic algorithms to generate genotype SNP barcodes. IEEE ACM T. Comput. Biol., 10, 361-371.
    • (2013) IEEE ACM T. Comput. Biol. , vol.10 , pp. 361-371
    • Yang, C.H.1
  • 18
    • 84969820694 scopus 로고    scopus 로고
    • Discovering causal interactions using Bayesian network scoring and information gain
    • Zeng,Z. et al. (2016) Discovering causal interactions using Bayesian network scoring and information gain. BMC Bioinformatics, 17, 221
    • (2016) BMC Bioinformatics , vol.17 , pp. 221
    • Zeng, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.