메뉴 건너뛰기




Volumn 8, Issue , 2017, Pages

Strigolactones biosynthesis and their role in abiotic stress resilience in plants: A critical review

Author keywords

Abiotic stress; Abscisic acid; Crosstalk; Phytohormones; Strigolactones

Indexed keywords


EID: 85029183648     PISSN: None     EISSN: 1664462X     Source Type: Journal    
DOI: 10.3389/fpls.2017.01487     Document Type: Review
Times cited : (95)

References (128)
  • 1
    • 84919363337 scopus 로고    scopus 로고
    • Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro
    • Abe, S., Sado, A., Tanaka, K., Kisugi, T., Asami, K., Ota, S., et al. (2014). Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. U.S.A. 111, 18084–18089. doi: 10.1073/pnas.1410801111
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 18084-18089
    • Abe, S.1    Sado, A.2    Tanaka, K.3    Kisugi, T.4    Asami, K.5    Ota, S.6
  • 2
    • 20444471142 scopus 로고    scopus 로고
    • Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
    • Akiyama, K., Matsuzaki, K., and Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827. doi: 10.1038/nature03608
    • (2005) Nature , vol.435 , pp. 824-827
    • Akiyama, K.1    Matsuzaki, K.2    Hayashi, H.3
  • 3
    • 84928882976 scopus 로고    scopus 로고
    • Strigolactones, a novel carotenoid-derived plant hormone
    • Al-Babili, S., and Bouwmeester, H. J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66, 161–186. doi: 10.1146/annurev-arplant-043014-114759
    • (2015) Annu. Rev. Plant Biol , vol.66 , pp. 161-186
    • Al-Babili, S.1    Bouwmeester, H.J.2
  • 4
    • 84858301666 scopus 로고    scopus 로고
    • The path from β-carotene to carlactone, a strigolactone-like plant hormone
    • Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., et al. (2012). The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335, 1348–1351. doi: 10.1126/science.1218094
    • (2012) Science , vol.335 , pp. 1348-1351
    • Alder, A.1    Jamil, M.2    Marzorati, M.3    Bruno, M.4    Vermathen, M.5    Bigler, P.6
  • 5
    • 84891597003 scopus 로고    scopus 로고
    • ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination
    • Arc, E., Sechet, J., Corbineau, F., Rajjou, L., and Marion-Poll, A. (2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 4:63. doi: 10.3389/fpls.2013.00063
    • (2013) Front. Plant Sci , vol.4 , pp. 63
    • Arc, E.1    Sechet, J.2    Corbineau, F.3    Rajjou, L.4    Marion-Poll, A.5
  • 6
    • 34548502219 scopus 로고    scopus 로고
    • DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice
    • Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., et al. (2007). DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019–1029. doi: 10.1111/j.1365-313X.2007.03210.x
    • (2007) Plant J , vol.51 , pp. 1019-1029
    • Arite, T.1    Iwata, H.2    Ohshima, K.3    Maekawa, M.4    Nakajima, M.5    Kojima, M.6
  • 7
    • 68949130180 scopus 로고    scopus 로고
    • D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers
    • Arite, T., Umehara, M., Ishikawa, S., Hanada, A., Maekawa, M., Yamaguchi, S., et al. (2009). d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 50, 1416–1424. doi: 10.1093/pcp/pcp091
    • (2009) Plant Cell Physiol , vol.50 , pp. 1416-1424
    • Arite, T.1    Umehara, M.2    Ishikawa, S.3    Hanada, A.4    Maekawa, M.5    Yamaguchi, S.6
  • 8
    • 53749094434 scopus 로고    scopus 로고
    • Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (Sitiens)
    • Aroca, R., del Mar Alguacil, M., Vernieri, P., and Ruiz-Lozano, J. M. (2008). Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (Sitiens). Microb. Ecol. 56, 704–719. doi: 10.1007/s00248-008-9390-y
    • (2008) Microb. Ecol , vol.56 , pp. 704-719
    • Aroca, R.1    Del Mar Alguacil, M.2    Vernieri, P.3    Ruiz-Lozano, J.M.4
  • 9
    • 84872379795 scopus 로고    scopus 로고
    • Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants
    • Aroca, R., Ruiz-Lozano, J. M., Zamarreño, ÁM., Paz, J. A., García-Mina, J. M., Pozo, M. J., et al. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170, 47–55. doi: 10.1016/j.jplph.2012.08.020
    • (2013) J. Plant Physiol , vol.170 , pp. 47-55
    • Aroca, R.1    Ruiz-Lozano, J.M.2    Zamarreño, Á.M.3    Paz, J.A.4    García-Mina, J.M.5    Pozo, M.J.6
  • 10
    • 33646145513 scopus 로고    scopus 로고
    • Plant carotenoid cleavage oxygenases and their apocarotenoid products
    • Auldridge, M. E., McCarty, D. R., and Klee, H. J. (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol. 9, 315–321. doi: 10.1016/j.pbi.2006.03.005
    • (2006) Curr. Opin. Plant Biol , vol.9 , pp. 315-321
    • Auldridge, M.E.1    McCarty, D.R.2    Klee, H.J.3
  • 11
    • 84906771565 scopus 로고    scopus 로고
    • Strigolactone signalling: Standing on the shoulders of DWARFs
    • Bennett, T., and Leyser, O. (2014). Strigolactone signalling: standing on the shoulders of DWARFs. Curr. Opin. Plant Biol. 22, 7–13. doi: 10.1016/j.pbi.2014.08.001
    • (2014) Curr. Opin. Plant Biol , vol.22 , pp. 7-13
    • Bennett, T.1    Leyser, O.2
  • 12
    • 33645011772 scopus 로고    scopus 로고
    • The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport
    • Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C., and Leyser, O. (2006). The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16, 553–563. doi: 10.1016/j.cub.2006.01.058
    • (2006) Curr. Biol , vol.16 , pp. 553-563
    • Bennett, T.1    Sieberer, T.2    Willett, B.3    Booker, J.4    Luschnig, C.5    Leyser, O.6
  • 13
    • 33745191953 scopus 로고    scopus 로고
    • Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria
    • Besserer, A., Puech-Pagès, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., et al. (2006). Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4:e226. doi: 10.1371/journal.pbio.0040226
    • (2006) Plos Biol , vol.4
    • Besserer, A.1    Puech-Pagès, V.2    Kiefer, P.3    Gomez-Roldan, V.4    Jauneau, A.5    Roy, S.6
  • 14
    • 84878363786 scopus 로고    scopus 로고
    • Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula
    • Bonneau, L., Huguet, S., Wipf, D., Pauly, N., and Truong, H.-N. (2013). Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol. 199, 188–202. doi: 10.1111/nph.12234
    • (2013) New Phytol , vol.199 , pp. 188-202
    • Bonneau, L.1    Huguet, S.2    Wipf, D.3    Pauly, N.4    Truong, H.-N.5
  • 15
    • 3342920134 scopus 로고    scopus 로고
    • MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule
    • Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H., and Leyser, O. (2004). MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14, 1232–1238. doi: 10.1016/j.cub.2004.06.061
    • (2004) Curr. Biol , vol.14 , pp. 1232-1238
    • Booker, J.1    Auldridge, M.2    Wills, S.3    McCarty, D.4    Klee, H.5    Leyser, O.6
  • 16
    • 20044371180 scopus 로고    scopus 로고
    • MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone
    • Booker, J., Sieberer, T., Wright, W., Williamson, L., Willett, B., Stirnberg, P., et al. (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 8, 443–449. doi: 10.1016/j.devcel.2005.01.009
    • (2005) Dev. Cell , vol.8 , pp. 443-449
    • Booker, J.1    Sieberer, T.2    Wright, W.3    Williamson, L.4    Willett, B.5    Stirnberg, P.6
  • 18
    • 34248176804 scopus 로고    scopus 로고
    • Rhizosphere communication of plants, parasitic plants and AM fungi
    • Bouwmeester, H. J., Roux, C., Lopez-Raez, J. A., and Bécard, G. (2007). Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12, 224–230. doi: 10.1016/j.tplants.2007.03.009
    • (2007) Trends Plant Sci , vol.12 , pp. 224-230
    • Bouwmeester, H.J.1    Roux, C.2    Lopez-Raez, J.A.3    Bécard, G.4
  • 19
    • 66149099230 scopus 로고    scopus 로고
    • Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis
    • Brewer, P. B., Dun, E. A., Ferguson, B. J., Rameau, C., and Beveridge, C. A. (2009). Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol. 150, 482–493. doi: 10.1104/pp.108.134783
    • (2009) Plant Physiol , vol.150 , pp. 482-493
    • Brewer, P.B.1    Dun, E.A.2    Ferguson, B.J.3    Rameau, C.4    Beveridge, C.A.5
  • 20
    • 84971556336 scopus 로고    scopus 로고
    • LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis
    • Brewer, P. B., Yoneyama, K., Filardo, F., Meyers, E., Scaffidi, A., Frickey, T., et al. (2016). LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 113, 6301–6306. doi: 10.1073/pnas.1601729113
    • (2016) Proc. Natl. Acad. Sci. U.S.A. , vol.113 , pp. 6301-6306
    • Brewer, P.B.1    Yoneyama, K.2    Filardo, F.3    Meyers, E.4    Scaffidi, A.5    Frickey, T.6
  • 21
    • 84891764933 scopus 로고    scopus 로고
    • Regulation of drought tolerance by the F-box protein MAX2 in arabidopsis
    • Bu, Q., Lv, T., Shen, H., Luong, P., Wang, J., Wang, Z., et al. (2014). Regulation of drought tolerance by the F-box protein MAX2 in arabidopsis. Plant Physiol. 164, 424–439. doi: 10.1104/pp.113.226837
    • (2014) Plant Physiol , vol.164 , pp. 424-439
    • Bu, Q.1    Lv, T.2    Shen, H.3    Luong, P.4    Wang, J.5    Wang, Z.6
  • 24
    • 0036443922 scopus 로고    scopus 로고
    • Biomass production, transpiration rate and endogenous abscisic acid levels in grafts of flacca and wild-type tomato (Lycopersicon esculentum)
    • Chen, G., Lips, S. H., and Sagi, M. (2002). Biomass production, transpiration rate and endogenous abscisic acid levels in grafts of flacca and wild-type tomato (Lycopersicon esculentum). Funct. Plant Biol. 29, 1329–1335. doi: 10.1071/PP01263
    • (2002) Funct. Plant Biol , vol.29 , pp. 1329-1335
    • Chen, G.1    Lips, S.H.2    Sagi, M.3
  • 25
    • 84893432057 scopus 로고    scopus 로고
    • The interaction between strigolactones and other plant hormones in the regulation of plant development
    • Cheng, X., Ruyter-Spira, C., and Bouwmeester, H. (2013). The interaction between strigolactones and other plant hormones in the regulation of plant development. Front. Plant Sci. 4:199. doi: 10.3389/fpls.2013.00199
    • (2013) Front. Plant Sci , vol.4 , pp. 199
    • Cheng, X.1    Ruyter-Spira, C.2    Bouwmeester, H.3
  • 26
    • 84899132374 scopus 로고    scopus 로고
    • Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis
    • Chevalier, F., Nieminen, K., Sánchez-Ferrero, J. C., Rodríguez, M. L., Chagoyen, M., Hardtke, C. S., et al. (2014). Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26, 1134–1150. doi: 10.1105/tpc.114.122903
    • (2014) Plant Cell , vol.26 , pp. 1134-1150
    • Chevalier, F.1    Nieminen, K.2    Sánchez-Ferrero, J.C.3    Rodríguez, M.L.4    Chagoyen, M.5    Hardtke, C.S.6
  • 27
    • 84956616973 scopus 로고    scopus 로고
    • Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front
    • Conn, C. E., and Nelson, D. C. (2015). Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front. Plant Sci. 6:1219. doi: 10.3389/fpls.2015.01219
    • (2015) Plant Sci , vol.6 , pp. 1219
    • Conn, C.E.1    Nelson, D.C.2
  • 28
    • 77956210642 scopus 로고    scopus 로고
    • Strigolactones enhance competition between shoot branches by dampening auxin transport
    • Crawford, S., Shinohara, N., Sieberer, T., Williamson, L., George, G., Hepworth, J., et al. (2010). Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137, 2905–2913. doi: 10.1242/dev.051987
    • (2010) Development , vol.137 , pp. 2905-2913
    • Crawford, S.1    Shinohara, N.2    Sieberer, T.3    Williamson, L.4    George, G.5    Hepworth, J.6
  • 29
    • 84897409397 scopus 로고    scopus 로고
    • MiRNAs in the crosstalk between phytohormone signalling pathways
    • Curaba, J., Singh, M. B., and Bhalla, P. L. (2014). miRNAs in the crosstalk between phytohormone signalling pathways. J. Exp. Bot. 65, 1425–1438. doi: 10.1093/jxb/eru002
    • (2014) J. Exp. Bot , vol.65 , pp. 1425-1438
    • Curaba, J.1    Singh, M.B.2    Bhalla, P.L.3
  • 30
    • 0032696471 scopus 로고    scopus 로고
    • Formation and breakdown of ABA
    • Cutler, A. J., and Krochko, J. E. (1999). Formation and breakdown of ABA. Trends Plant Sci. 4, 472–478. doi: 10.1016/S1360-1385(99)01497-1
    • (1999) Trends Plant Sci , vol.4 , pp. 472-478
    • Cutler, A.J.1    Krochko, J.E.2
  • 31
    • 0036188286 scopus 로고    scopus 로고
    • Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture
    • Davies, W. J., Wilkinson, S., and Loveys, B. (2002). Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol. 153, 449–460. doi: 10.1046/j.0028-646X.2001.00345.x
    • (2002) New Phytol , vol.153 , pp. 449-460
    • Davies, W.J.1    Wilkinson, S.2    Loveys, B.3
  • 32
    • 84922511864 scopus 로고    scopus 로고
    • From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula
    • De Cuyper, C., Fromentin, J., Yocgo, R. E., De Keyser, A., Guillotin, B., Kunert, K., et al. (2015). From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J. Exp. Bot. 66, 137–146. doi: 10.1093/jxb/eru404
    • (2015) J. Exp. Bot , vol.66 , pp. 137-146
    • De Cuyper, C.1    Fromentin, J.2    Yocgo, R.E.3    De Keyser, A.4    Guillotin, B.5    Kunert, K.6
  • 34
    • 19544379019 scopus 로고    scopus 로고
    • The F-box protein TIR1 is an auxin receptor
    • Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445. doi: 10.1038/nature03543
    • (2005) Nature , vol.435 , pp. 441-445
    • Dharmasiri, N.1    Dharmasiri, S.2    Estelle, M.3
  • 35
    • 84925515727 scopus 로고    scopus 로고
    • Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment
    • Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., et al. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22, 4907–4921. doi: 10.1007/s11356-014-3754-2
    • (2015) Environ. Sci. Pollut. Res , vol.22 , pp. 4907-4921
    • Fahad, S.1    Hussain, S.2    Bano, A.3    Saud, S.4    Hassan, S.5    Shan, D.6
  • 36
    • 84926409098 scopus 로고    scopus 로고
    • Role of microRNAs in plant drought tolerance
    • Ferdous, J., Hussain, S. S., and Shi, B.-J. (2015). Role of microRNAs in plant drought tolerance. Plant Biotechnol. J. 13, 293–305. doi: 10.1111/pbi.12318
    • (2015) Plant Biotechnol. J , vol.13 , pp. 293-305
    • Ferdous, J.1    Hussain, S.S.2    Shi, B.-J.3
  • 37
    • 84964285768 scopus 로고    scopus 로고
    • Stereospecificity in strigolactone biosynthesis and perception
    • Flematti, G. G. R., Scaffidi, A., Waters, M. T. M., and Smith, S. S. M. (2016). Stereospecificity in strigolactone biosynthesis and perception. Planta 243, 1361–1373. doi: 10.1007/s00425-016-2523-5
    • (2016) Planta , vol.243 , pp. 1361-1373
    • Flematti, G.G.R.1    Scaffidi, A.2    Waters, M.T.M.3    Smith, S.S.M.4
  • 38
    • 4043144379 scopus 로고    scopus 로고
    • A compound from smoke that promotes seed germination
    • Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., and Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science 305:977. doi: 10.1126/science.1099944
    • (2004) Science , vol.305 , pp. 977
    • Flematti, G.R.1    Ghisalberti, E.L.2    Dixon, K.W.3    Trengove, R.D.4
  • 39
    • 22144451216 scopus 로고    scopus 로고
    • The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea
    • Foo, E., Bullier, E., Goussot, M., Foucher, F., Rameau, C., and Beveridge, C. A. (2005). The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17, 464–474. doi: 10.1105/tpc.104.026716
    • (2005) Plant Cell , vol.17 , pp. 464-474
    • Foo, E.1    Bullier, E.2    Goussot, M.3    Foucher, F.4    Rameau, C.5    Beveridge, C.A.6
  • 40
  • 41
    • 79959898336 scopus 로고    scopus 로고
    • ABA-mediated transcriptional regulation in response to osmotic stress in plants
    • Fujita, Y., Fujita, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124, 509–525. doi: 10.1007/s10265-011-0412-3
    • (2011) J. Plant Res , vol.124 , pp. 509-525
    • Fujita, Y.1    Fujita, M.2    Shinozaki, K.3    Yamaguchi-Shinozaki, K.4
  • 43
    • 79960035423 scopus 로고    scopus 로고
    • Early transcriptional defense responses in Arabidopsis cell suspension culture under high-light conditions
    • Gonzalez-Perez, S., Gutierrez, J., Garcia-Garcia, F., Osuna, D., Dopazo, J., Lorenzo, O., et al. (2011). Early transcriptional defense responses in Arabidopsis cell suspension culture under high-light conditions. Plant Physiol. 156, 1439–1456. doi: 10.1104/pp.111.177766
    • (2011) Plant Physiol , vol.156 , pp. 1439-1456
    • Gonzalez-Perez, S.1    Gutierrez, J.2    Garcia-Garcia, F.3    Osuna, D.4    Dopazo, J.5    Lorenzo, O.6
  • 45
    • 84868514386 scopus 로고    scopus 로고
    • DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone
    • Hamiaux, C., Drummond, R. S. M., Janssen, B. J., Ledger, S. E., Cooney, J. M., Newcomb, R. D., et al. (2012). DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22, 2032–2036. doi: 10.1016/j.cub.2012.08.007
    • (2012) Curr. Biol , vol.22 , pp. 2032-2036
    • Hamiaux, C.1    Drummond, R.S.M.2    Janssen, B.J.3    Ledger, S.E.4    Cooney, J.M.5    Newcomb, R.D.6
  • 46
    • 70349223008 scopus 로고    scopus 로고
    • Interactions between auxin and strigolactone in shoot branching control
    • Hayward, A., Stirnberg, P., Beveridge, C., and Leyser, O. (2009). Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 151, 400–412. doi: 10.1104/pp.109.137646
    • (2009) Plant Physiol , vol.151 , pp. 400-412
    • Hayward, A.1    Stirnberg, P.2    Beveridge, C.3    Leyser, O.4
  • 47
    • 0032816988 scopus 로고    scopus 로고
    • Electric signaling and pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants
    • Herde, O., Pena Cortes, H., Wasternack, Willmitzer L., and Fisahn, J. (1999). Electric signaling and pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol. 119, 213–218. doi: 10.1104/pp.119.1.213
    • (1999) Plant Physiol. , vol.119 , pp. 213-218
    • Herde, O.1    Pena Cortes, H.2    Wasternack, W.L.3    Fisahn, J.4
  • 48
    • 34447509646 scopus 로고    scopus 로고
    • Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza
    • Herrera-Medina, M. J., Steinkellner, S., Vierheilig, H., Ocampo Bote, J. A., and García Garrido, J. M. (2007). Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol. 175, 554–564. doi: 10.1111/j.1469-8137.2007.02107.x
    • (2007) New Phytol , vol.175 , pp. 554-564
    • Herrera-Medina, M.J.1    Steinkellner, S.2    Vierheilig, H.3    Ocampo Bote, J.A.4    García Garrido, J.M.5
  • 49
    • 84878960827 scopus 로고    scopus 로고
    • The root of ABA action in environmental stress response
    • Hong, J. H., Seah, S. W., and Xu, J. (2013). The root of ABA action in environmental stress response. Plant Cell Rep. 32, 971–983. doi: 10.1007/s00299-013-1439-9
    • (2013) Plant Cell Rep , vol.32 , pp. 971-983
    • Hong, J.H.1    Seah, S.W.2    Xu, J.3
  • 50
    • 84958012526 scopus 로고    scopus 로고
    • Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition
    • Ito, S., Ito, K., Abeta, N., Takahashi, R., Sasaki, Y., and Yajima, S. (2016). Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition. Plant Signal. Behav. 11:e1126031. doi: 10.1080/15592324.2015.1126031
    • (2016) Plant Signal. Behav , vol.11
    • Ito, S.1    Ito, K.2    Abeta, N.3    Takahashi, R.4    Sasaki, Y.5    Yajima, S.6
  • 51
    • 84925625868 scopus 로고    scopus 로고
    • Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis
    • Ito, S., Nozoye, T., Sasaki, E., Imai, M., Shiwa, Y., Shibata-Hatta, M., et al. (2015). Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis. PLoS ONE 10:e0119724. doi: 10.1371/journal.pone.0119724
    • (2015) Plos ONE , vol.10
    • Ito, S.1    Nozoye, T.2    Sasaki, E.3    Imai, M.4    Shiwa, Y.5    Shibata-Hatta, M.6
  • 52
    • 79960040444 scopus 로고    scopus 로고
    • Quantification of the relationship between strigolactones and striga hermonthica infection in rice under varying levels of nitrogen and phosphorus
    • Jamil, M., Charnikhova, T., Cardoso, C., Jamil, T., Ueno, K., Verstappen, F., et al. (2011). Quantification of the relationship between strigolactones and striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res. 51, 373–385. doi: 10.1111/j.1365-3180.2011.00847.x
    • (2011) Weed Res , vol.51 , pp. 373-385
    • Jamil, M.1    Charnikhova, T.2    Cardoso, C.3    Jamil, T.4    Ueno, K.5    Verstappen, F.6
  • 53
    • 84899064003 scopus 로고    scopus 로고
    • Effect of phosphate-based seed priming on strigolactone production and Striga hermonthica infection in cereals
    • Jamil, M., Charnikhova, T., Verstappen, F., Ali, Z., Wainwright, H., and Bouwmeester, H. J. (2014). Effect of phosphate-based seed priming on strigolactone production and Striga hermonthica infection in cereals. Weed Res. 54, 307–313. doi: 10.1111/wre.12067
    • (2014) Weed Res , vol.54 , pp. 307-313
    • Jamil, M.1    Charnikhova, T.2    Verstappen, F.3    Ali, Z.4    Wainwright, H.5    Bouwmeester, H.J.6
  • 54
    • 84898754392 scopus 로고    scopus 로고
    • Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis
    • Jia, K.-P., Luo, Q., He, S.-B., Lu, X.-D., and Yang, H.-Q. (2014). Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Mol. Plant 7, 528–540. doi: 10.1093/mp/sst093
    • (2014) Mol. Plant , vol.7 , pp. 528-540
    • Jia, K.-P.1    Luo, Q.2    He, S.-B.3    Lu, X.-D.4    Yang, H.-Q.5
  • 55
    • 84890449326 scopus 로고    scopus 로고
    • DWARF 53 acts as a repressor of strigolactone signalling in rice
    • Jiang, L., Liu, X., Xiong, G., Liu, H., Chen, F., Wang, L., et al. (2013). DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504, 401–405. doi: 10.1038/nature12870
    • (2013) Nature , vol.504 , pp. 401-405
    • Jiang, L.1    Liu, X.2    Xiong, G.3    Liu, H.4    Chen, F.5    Wang, L.6
  • 56
    • 33751071837 scopus 로고    scopus 로고
    • Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals
    • Johnson, X., Brcich, T., Dun, E. A., Goussot, M., Haurogné, K., Beveridge, C. A., et al. (2006). Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142, 1014–1026. doi: 10.1104/pp.106.087676
    • (2006) Plant Physiol , vol.142 , pp. 1014-1026
    • Johnson, X.1    Brcich, T.2    Dun, E.A.3    Goussot, M.4    Haurogné, K.5    Beveridge, C.A.6
  • 57
    • 78650751473 scopus 로고    scopus 로고
    • Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis
    • Kapulnik, Y., Delaux, P.-M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., et al. (2011). Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233, 209–216. doi: 10.1007/s00425-010-1310-y
    • (2011) Planta , vol.233 , pp. 209-216
    • Kapulnik, Y.1    Delaux, P.-M.2    Resnick, N.3    Mayzlish-Gati, E.4    Wininger, S.5    Bhattacharya, C.6
  • 58
    • 84866412775 scopus 로고    scopus 로고
    • The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis
    • Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., et al. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 196, 535–547. doi: 10.1111/j.1469-8137.2012.04265.x
    • (2012) New Phytol , vol.196 , pp. 535-547
    • Kohlen, W.1    Charnikhova, T.2    Lammers, M.3    Pollina, T.4    Tóth, P.5    Haider, I.6
  • 59
    • 84939530261 scopus 로고    scopus 로고
    • Cellular events of strigolactone signalling and their crosstalk with auxin in roots
    • Koltai, H. (2015). Cellular events of strigolactone signalling and their crosstalk with auxin in roots. J. Exp. Bot. 66, 4855–4861. doi: 10.1093/jxb/erv178
    • (2015) J. Exp. Bot , vol.66 , pp. 4855-4861
    • Koltai, H.1
  • 60
    • 77952546101 scopus 로고    scopus 로고
    • Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers
    • Koltai, H., Dor, E., Hershenhorn, J., Joel, D. M., Weininger, S., Lekalla, S., et al. (2010). Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J. Plant Growth Regul. 29, 129–136. doi: 10.1007/s00344-009-9122-7
    • (2010) J. Plant Growth Regul , vol.29 , pp. 129-136
    • Koltai, H.1    Dor, E.2    Hershenhorn, J.3    Joel, D.M.4    Weininger, S.5    Lekalla, S.6
  • 61
    • 84965017150 scopus 로고    scopus 로고
    • Strigolactones: Past, present and future
    • Koltai, H., and Prandi, C. (2016). Strigolactones: past, present and future. Planta 243, 1309-1309. doi: 10.1007/s00425-016-2541-3
    • (2016) Planta , vol.243
    • Koltai, H.1    Prandi, C.2
  • 62
    • 84858291479 scopus 로고    scopus 로고
    • A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching
    • Kretzschmar, T., Kohlen, W., Sasse, J., Borghi, L., Schlegel, M., Bachelier, J. B., et al. (2012). A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483, 341–344. doi: 10.1038/nature10873
    • (2012) Nature , vol.483 , pp. 341-344
    • Kretzschmar, T.1    Kohlen, W.2    Sasse, J.3    Borghi, L.4    Schlegel, M.5    Bachelier, J.B.6
  • 63
    • 0035986775 scopus 로고    scopus 로고
    • Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis
    • Linkohr, B. I., Williamson, L. C., Fitter, A. H., and Leyser, H. M. O. (2002). Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 29, 751–760. doi: 10.1046/j.1365-313X.2002.01251.x
    • (2002) Plant J , vol.29 , pp. 751-760
    • Linkohr, B.I.1    Williamson, L.C.2    Fitter, A.H.3    Leyser, H.M.O.4
  • 64
    • 84939993452 scopus 로고    scopus 로고
    • Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: Exploring the interaction between strigolactones and ABA under abiotic stress
    • Liu, J., He, H., Vitali, M., Visentin, I., Charnikhova, T., Haider, I., et al. (2015). Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241, 1435–1451. doi: 10.1007/s00425-015-2266-8
    • (2015) Planta , vol.241 , pp. 1435-1451
    • Liu, J.1    He, H.2    Vitali, M.3    Visentin, I.4    Charnikhova, T.5    Haider, I.6
  • 65
    • 84872606803 scopus 로고    scopus 로고
    • Signaling role of Strigolactones at the interface between plants, (Micro)organisms, and a changing environment
    • Liu, J., Lovisolo, C., Schubert, A., and Cardinale, F. (2013). Signaling role of Strigolactones at the interface between plants, (micro)organisms, and a changing environment. J. Plant Interact. 8, 17–33. doi: 10.1080/17429145.2012.750692
    • (2013) J. Plant Interact , vol.8 , pp. 17-33
    • Liu, J.1    Lovisolo, C.2    Schubert, A.3    Cardinale, F.4
  • 66
    • 84948960628 scopus 로고    scopus 로고
    • How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?
    • López-Ráez, J. A. (2016). How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243, 1375–1385. doi: 10.1007/s00425-015-2435-9
    • (2016) Planta , vol.243 , pp. 1375-1385
    • López-Ráez, J.A.1
  • 67
    • 43449116907 scopus 로고    scopus 로고
    • Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation
    • López-Ráez, J. A., Charnikhova, T., Gómez-Roldán, V., Matusova, R., Kohlen, W., De Vos, R., et al. (2008a). Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178, 863–874. doi: 10.1111/j.1469-8137.2008.02406.x
    • (2008) New Phytol , vol.178 , pp. 863-874
    • López-Ráez, J.A.1    Charnikhova, T.2    Gómez-Roldán, V.3    Matusova, R.4    Kohlen, W.5    De Vos, R.6
  • 68
    • 50449098990 scopus 로고    scopus 로고
    • Susceptibility of the tomato mutant high pigment-2 dg (Hp-2 dg) to Orobanche spp. infection
    • López-Ráez, J. A., Charnikhova, T., Mulder, P., Kohlen, W., Bino, R., Levin, I., et al. (2008b). Susceptibility of the tomato mutant high pigment-2 dg (hp-2 dg) to Orobanche spp. infection. J. Agric. Food Chem. 56, 6326–6332. doi: 10.1021/jf800760x
    • (2008) J. Agric. Food Chem , vol.56 , pp. 6326-6332
    • López-Ráez, J.A.1    Charnikhova, T.2    Mulder, P.3    Kohlen, W.4    Bino, R.5    Levin, I.6
  • 70
    • 84952781839 scopus 로고    scopus 로고
    • Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs
    • Manzi, M., Lado, J., Rodrigo, M. J., Zacarías, L., Arbona, V., and Gómez-Cadenas, A. (2015). Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs. Plant Cell Physiol. 56, 2457–2466. doi: 10.1093/pcp/pcv161
    • (2015) Plant Cell Physiol , vol.56 , pp. 2457-2466
    • Manzi, M.1    Lado, J.2    Rodrigo, M.J.3    Zacarías, L.4    Arbona, V.5    Gómez-Cadenas, A.6
  • 72
    • 84984644957 scopus 로고    scopus 로고
    • Perception and signaling of strigolactones
    • Marzec, M. (2016). Perception and signaling of strigolactones. Front. Plant Sci. 7:1260. doi: 10.3389/fpls.2016.01260
    • (2016) Front. Plant Sci , vol.7 , pp. 1260
    • Marzec, M.1
  • 73
    • 84925871047 scopus 로고    scopus 로고
    • In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of strigolactones in plants
    • Marzec, M., and Muszynska, A. (2015). In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of strigolactones in plants. Int. J. Mol. Sci. 16, 6757–6782. doi: 10.3390/ijms16046757
    • (2015) Int. J. Mol. Sci , vol.16 , pp. 6757-6782
    • Marzec, M.1    Muszynska, A.2
  • 74
    • 33644647072 scopus 로고    scopus 로고
    • The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. Are derived from the carotenoid pathway
    • Matusova, R., Rani, K., Verstappen, F. W. A., Franssen, M. C. R., Beale, M. H., and Bouwmeester, H. J. (2005). The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139, 920–934. doi: 10.1104/pp.105.061382
    • (2005) Plant Physiol , vol.139 , pp. 920-934
    • Matusova, R.1    Rani, K.2    Verstappen, F.W.A.3    Franssen, M.C.R.4    Beale, M.H.5    Bouwmeester, H.J.6
  • 75
    • 84868322847 scopus 로고    scopus 로고
    • Strigolactones are involved in root response to low phosphate conditions in Arabidopsis
    • Mayzlish-Gati, E., De-Cuyper, C., Goormachtig, S., Beeckman, T., Vuylsteke, M., Brewer, P. B., et al. (2012). Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol. 160, 1329–1341. doi: 10.1104/pp.112.202358
    • (2012) Plant Physiol , vol.160 , pp. 1329-1341
    • Mayzlish-Gati, E.1    De-Cuyper, C.2    Goormachtig, S.3    Beeckman, T.4    Vuylsteke, M.5    Brewer, P.B.6
  • 76
    • 84926377659 scopus 로고    scopus 로고
    • The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA
    • Merilo, E., Jalakas, P., Kollist, H., and Brosché, M. (2015). The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA. Mol. Plant 8, 657–659. doi: 10.1016/j.molp.2015.01.014
    • (2015) Mol. Plant , vol.8 , pp. 657-659
    • Merilo, E.1    Jalakas, P.2    Kollist, H.3    Brosché, M.4
  • 77
    • 0034954756 scopus 로고    scopus 로고
    • Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal
    • Morris, S. E., Turnbull, C. G., Murfet, I. C., and Beveridge, C. A. (2001). Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol. 126, 1205–1213. doi: 10.1104/pp.126.3.1205
    • (2001) Plant Physiol , vol.126 , pp. 1205-1213
    • Morris, S.E.1    Turnbull, C.G.2    Murfet, I.C.3    Beveridge, C.A.4
  • 78
    • 84886242440 scopus 로고    scopus 로고
    • Molecular mechanism of strigolactone perception by DWARF14
    • Nakamura, H., Xue, Y.-L., Miyakawa, T., Hou, F., Qin, H.-M., Fukui, K., et al. (2013). Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4, 189–194. doi: 10.1038/ncomms3613
    • (2013) Nat. Commun , vol.4 , pp. 189-194
    • Nakamura, H.1    Xue, Y.-L.2    Miyakawa, T.3    Hou, F.4    Qin, H.-M.5    Fukui, K.6
  • 79
    • 79957699893 scopus 로고    scopus 로고
    • F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana
    • Nelson, D. C., Scaffidi, A., Dun, E. A., Waters, M. T., Flematti, G. R., Dixon, K. W., et al. (2011). F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 108, 8897–8902. doi: 10.1073/pnas.1100987108
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 8897-8902
    • Nelson, D.C.1    Scaffidi, A.2    Dun, E.A.3    Waters, M.T.4    Flematti, G.R.5    Dixon, K.W.6
  • 80
    • 84880258913 scopus 로고    scopus 로고
    • Responses of root architecture development to low phosphorus availability: A review
    • Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., and Zhang, Y. S. (2013). Responses of root architecture development to low phosphorus availability: a review. Ann. Bot. 112, 391–408. doi: 10.1093/aob/mcs285
    • (2013) Ann. Bot , vol.112 , pp. 391-408
    • Niu, Y.F.1    Chai, R.S.2    Jin, G.L.3    Wang, H.4    Tang, C.X.5    Zhang, Y.S.6
  • 81
    • 79961020658 scopus 로고    scopus 로고
    • Root developmental adaptation to phosphate starvation: Better safe than sorry
    • Péret, B., Clément, M., Nussaume, L., and Desnos, T. (2011). Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci. 16, 442–450. doi: 10.1016/j.tplants.2011.05.006
    • (2011) Trends Plant Sci , vol.16 , pp. 442-450
    • Péret, B.1    Clément, M.2    Nussaume, L.3    Desnos, T.4
  • 82
    • 84914164065 scopus 로고    scopus 로고
    • Root architecture responses: In search of phosphate
    • Péret, B., Desnos, T., Jost, R., Kanno, S., Berkowitz, O., and Nussaume, L. (2014). Root architecture responses: in search of phosphate. Plant Physiol. 166, 1713–1723. doi: 10.1104/pp.114.244541
    • (2014) Plant Physiol , vol.166 , pp. 1713-1723
    • Péret, B.1    Desnos, T.2    Jost, R.3    Kanno, S.4    Berkowitz, O.5    Nussaume, L.6
  • 83
    • 62549165835 scopus 로고    scopus 로고
    • Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor
    • Pérez-Torres, C.-A., López-Bucio, J., Cruz-Ramírez, A., Ibarra-Laclette, E., Dharmasiri, S., Estelle, M., et al. (2008). Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20, 3258–3272. doi: 10.1105/tpc.108.058719
    • (2008) Plant Cell , vol.20 , pp. 3258-3272
    • Pérez-Torres, C.-A.1    López-Bucio, J.2    Cruz-Ramírez, A.3    Ibarra-Laclette, E.4    Dharmasiri, S.5    Estelle, M.6
  • 85
    • 84955213074 scopus 로고    scopus 로고
    • Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant
    • Ruiz-Lozano, J. M., Aroca, R., Zamarreño, ÁM., Molina, S., Andreo-Jiménez, B., Porcel, R., et al. (2016). Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant. Cell Environ. 39, 441–452. doi: 10.1111/pce.12631
    • (2016) Cell Environ , vol.39 , pp. 441-452
    • Ruiz-Lozano, J.M.1    Aroca, R.2    Zamarreño, Á.M.3    Molina, S.4    Reo-Jiménez, B.5    Porcel, R.6
  • 89
    • 8744286799 scopus 로고    scopus 로고
    • The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching
    • Schwartz, S. H., Qin, X., and Loewen, M. C. (2004). The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 279, 46940–46945. doi: 10.1074/jbc.M409004200
    • (2004) J. Biol. Chem , vol.279 , pp. 46940-46945
    • Schwartz, S.H.1    Qin, X.2    Loewen, M.C.3
  • 90
    • 84893422174 scopus 로고    scopus 로고
    • Carlactone is an endogenous biosynthetic precursor for strigolactones
    • Seto, Y., Sado, A., Asami, K., Hanada, A., Umehara, M., Akiyama, K., et al. (2014). Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl. Acad. Sci. U.S.A. 111, 1640–1645. doi: 10.1073/pnas.1314805111
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 1640-1645
    • Seto, Y.1    Sado, A.2    Asami, K.3    Hanada, A.4    Umehara, M.5    Akiyama, K.6
  • 91
    • 84903540898 scopus 로고    scopus 로고
    • Strigolactone biosynthesis and perception
    • Seto, Y., and Yamaguchi, S. (2014). Strigolactone biosynthesis and perception. Curr. Opin. Plant Biol. 21, 1–6. doi: 10.1016/j.pbi.2014.06.001
    • (2014) Curr. Opin. Plant Biol , vol.21 , pp. 1-6
    • Seto, Y.1    Yamaguchi, S.2
  • 92
    • 84903626362 scopus 로고    scopus 로고
    • Signalling and responses to strigolactones and karrikins
    • Smith, S. M., and Li, J. (2014). Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol. 21, 23–29. doi: 10.1016/j.pbi.2014.06.003
    • (2014) Curr. Opin. Plant Biol , vol.21 , pp. 23-29
    • Smith, S.M.1    Li, J.2
  • 93
    • 18144377299 scopus 로고    scopus 로고
    • The decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development
    • Snowden, K. C., Simkin, A. J., Janssen, B. J., Templeton, K. R., Loucas, H. M., Simons, J. L., et al. (2005). The decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17, 746–759. doi: 10.1105/tpc.104.027714
    • (2005) Plant Cell , vol.17 , pp. 746-759
    • Snowden, K.C.1    Simkin, A.J.2    Janssen, B.J.3    Templeton, K.R.4    Loucas, H.M.5    Simons, J.L.6
  • 94
    • 0038722744 scopus 로고    scopus 로고
    • MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea
    • Sorefan, K., Booker, J., Haurogné, K., Goussot, M., Bainbridge, K., Foo, E., et al. (2003). MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17, 1469–1474. doi: 10.1101/gad.256603
    • (2003) Genes Dev , vol.17 , pp. 1469-1474
    • Sorefan, K.1    Booker, J.2    Haurogné, K.3    Goussot, M.4    Bainbridge, K.5    Foo, E.6
  • 96
    • 84949668181 scopus 로고    scopus 로고
    • SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis
    • Soundappan, I., Bennett, T., Morffy, N., Liang, Y., Stanga, J. P., Abbas, A., et al. (2015). SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27, 3143–3159. doi: 10.1105/tpc.15.00562
    • (2015) Plant Cell , vol.27 , pp. 3143-3159
    • Soundappan, I.1    Bennett, T.2    Morffy, N.3    Liang, Y.4    Stanga, J.P.5    Abbas, A.6
  • 97
    • 84883230977 scopus 로고    scopus 로고
    • SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis
    • Stanga, J. P., Smith, S. M., Briggs, W. R., and Nelson, D. C. (2013). SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol. 163, 318–330. doi: 10.1104/pp.113.221259
    • (2013) Plant Physiol , vol.163 , pp. 318-330
    • Stanga, J.P.1    Smith, S.M.2    Briggs, W.R.3    Nelson, D.C.4
  • 98
    • 33947682757 scopus 로고    scopus 로고
    • MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching
    • Stirnberg, P., Furner, I. J., and Ottoline Leyser, H. M. (2007). MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50, 80–94. doi: 10.1111/j.1365-313X.2007.03032.x
    • (2007) Plant J , vol.50 , pp. 80-94
    • Stirnberg, P.1    Furner, I.J.2    Ottoline Leyser, H.M.3
  • 99
    • 0036336159 scopus 로고    scopus 로고
    • MAX1 and MAX2 control shoot lateral branching in Arabidopsis
    • Stirnberg, P., van De Sande, K., and Leyser, H. M. O. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129, 1131–1141. doi: 10.1105/tpc.13.8.1779
    • (2002) Development , vol.129 , pp. 1131-1141
    • Stirnberg, P.1    Van De Sande, K.2    Leyser, H.M.O.3
  • 100
    • 84907776656 scopus 로고    scopus 로고
    • Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice
    • Sun, H., Tao, J., Liu, S., Huang, S., Chen, S., Xie, X., et al. (2014). Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J. Exp. Bot. 65, 6735–6746. doi: 10.1093/jxb/eru029
    • (2014) J. Exp. Bot , vol.65 , pp. 6735-6746
    • Sun, H.1    Tao, J.2    Liu, S.3    Huang, S.4    Chen, S.5    Xie, X.6
  • 101
    • 85027949122 scopus 로고    scopus 로고
    • Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system
    • Toh, S., Holbrook-Smith, D., Stokes, M. E., Tsuchiya, Y., and McCourt, P. (2014). Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. Chem. Biol. 21, 988–998. doi: 10.1016/j.chembiol.2014.07.005
    • (2014) Chem. Biol , vol.21 , pp. 988-998
    • Toh, S.1    Holbrook-Smith, D.2    Stokes, M.E.3    Tsuchiya, Y.4    McCourt, P.5
  • 102
    • 84939810413 scopus 로고    scopus 로고
    • Probing strigolactone receptors in Striga hermonthica with fluorescence
    • Tsuchiya, Y., Yoshimura, M., Sato, Y., Kuwata, K., Toh, S., Holbrook-Smith, D., et al. (2015). Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349, 864–868. doi: 10.1126/science.aab3831
    • (2015) Science , vol.349 , pp. 864-868
    • Tsuchiya, Y.1    Yoshimura, M.2    Sato, Y.3    Kuwata, K.4    Toh, S.5    Holbrook-Smith, D.6
  • 103
    • 34250822881 scopus 로고    scopus 로고
    • Gibberellin receptor and its role in gibberellin signaling in plants
    • Ueguchi-Tanaka, M., Nakajima, M., Motoyuki, A., and Matsuoka, M. (2007). Gibberellin receptor and its role in gibberellin signaling in plants. Annu. Rev. Plant Biol. 58, 183–198. doi: 10.1146/annurev.arplant.58.032806.103830
    • (2007) Annu. Rev. Plant Biol , vol.58 , pp. 183-198
    • Ueguchi-Tanaka, M.1    Nakajima, M.2    Motoyuki, A.3    Matsuoka, M.4
  • 104
    • 84930741399 scopus 로고    scopus 로고
    • Structural requirements of Strigolactones for shoot branching inhibition in rice and arabidopsis
    • Umehara, M., Cao, M., Akiyama, K., Akatsu, T., Seto, Y., Hanada, A., et al. (2015). Structural requirements of Strigolactones for shoot branching inhibition in rice and arabidopsis. Plant Cell Physiol. 56, 1059–1072. doi: 10.1093/pcp/pcv028
    • (2015) Plant Cell Physiol , vol.56 , pp. 1059-1072
    • Umehara, M.1    Cao, M.2    Akiyama, K.3    Akatsu, T.4    Seto, Y.5    Hanada, A.6
  • 105
    • 77954965001 scopus 로고    scopus 로고
    • Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice
    • Umehara, M., Hanada, A., Magome, H., Takeda-Kamiya, N., and Yamaguchi, S. (2010). Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 51, 1118–1126. doi: 10.1093/pcp/pcq084
    • (2010) Plant Cell Physiol , vol.51 , pp. 1118-1126
    • Umehara, M.1    Hanada, A.2    Magome, H.3    Takeda-Kamiya, N.4    Yamaguchi, S.5
  • 106
    • 51649112342 scopus 로고    scopus 로고
    • Inhibition of shoot branching by new terpenoid plant hormones
    • Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., et al. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200. doi: 10.1038/nature07272
    • (2008) Nature , vol.455 , pp. 195-200
    • Umehara, M.1    Hanada, A.2    Yoshida, S.3    Akiyama, K.4    Arite, T.5    Takeda-Kamiya, N.6
  • 107
    • 84988892473 scopus 로고    scopus 로고
    • Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato
    • Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter-Spira, C., Novák, O., et al. (2016). Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 212, 954–963. doi: 10.1111/nph.14190
    • (2016) New Phytol , vol.212 , pp. 954-963
    • Visentin, I.1    Vitali, M.2    Ferrero, M.3    Zhang, Y.4    Ruyter-Spira, C.5    Novák, O.6
  • 108
    • 84906065976 scopus 로고    scopus 로고
    • Strigolactones and the control of plant development: Lessons from shoot branching
    • Waldie, T., McCulloch, H., and Leyser, O. (2014). Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 79, 607–622. doi: 10.1111/tpj.12488
    • (2014) Plant J , vol.79 , pp. 607-622
    • Waldie, T.1    McCulloch, H.2    Leyser, O.3
  • 109
    • 84959135289 scopus 로고    scopus 로고
    • Strigolactone versus gibberellin signaling: Reemerging concepts?
    • Wallner, E.-S., López-Salmerón, V., and Greb, T. (2016). Strigolactone versus gibberellin signaling: reemerging concepts? Planta 243, 1339–1350. doi: 10.1007/s00425-016-2478-6
    • (2016) Planta , vol.243 , pp. 1339-1350
    • Wallner, E.-S.1    López-Salmerón, V.2    Greb, T.3
  • 110
    • 85009141772 scopus 로고    scopus 로고
    • Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants
    • Wani, S. H., Kumar, V., Shriram, V., and Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 4, 162–176. doi: 10.1016/j.cj.2016.01.010
    • (2016) Crop J , vol.4 , pp. 162-176
    • Wani, S.H.1    Kumar, V.2    Shriram, V.3    Sah, S.K.4
  • 111
    • 84863676736 scopus 로고    scopus 로고
    • The Arabidopsis ortholog of rice DWARF27 Acts upstream of MAX1 in the control of plant development by strigolactones
    • Waters, M. T., Brewer, P. B., Bussell, J. D., Smith, S. M., and Beveridge, C. A. (2012a). The Arabidopsis ortholog of rice DWARF27 Acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol. 159, 1073–1085. doi: 10.1104/pp.112.196253
    • (2012) Plant Physiol , vol.159 , pp. 1073-1085
    • Waters, M.T.1    Brewer, P.B.2    Bussell, J.D.3    Smith, S.M.4    Beveridge, C.A.5
  • 112
    • 85015050299 scopus 로고    scopus 로고
    • Strigolactone signaling and evolution
    • Waters, M. T., Gutjahr, C., Bennett, T., and Nelson, D. C. (2017). Strigolactone signaling and evolution. Annu. Rev. Plant Biol. 68, 291–322. doi: 10.1146/annurev-arplant-042916-040925
    • (2017) Annu. Rev. Plant Biol , vol.68 , pp. 291-322
    • Waters, M.T.1    Gutjahr, C.2    Bennett, T.3    Nelson, D.C.4
  • 113
    • 84864804907 scopus 로고    scopus 로고
    • Karrikins force a rethink of strigolactone mode of action
    • Waters, M. T., Scaffidi, A., Flematti, G. R., and Smith, S. M. (2012b). Karrikins force a rethink of strigolactone mode of action. Plant Signal. Behav. 7, 969–972. doi: 10.4161/psb.20977
    • (2012) Plant Signal. Behav , vol.7 , pp. 969-972
    • Waters, M.T.1    Scaffidi, A.2    Flematti, G.R.3    Smith, S.M.4
  • 114
    • 0036181615 scopus 로고    scopus 로고
    • ABA-based chemical signalling: The co-ordination of responses to stress in plants
    • Wilkinson, S., and Davies, W. J. (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant, Cell Environ. 25, 195–210. doi: 10.1046/j.0016-8025.2001.00824.x
    • (2002) Plant, Cell Environ , vol.25 , pp. 195-210
    • Wilkinson, S.1    Davies, W.J.2
  • 115
    • 85000542342 scopus 로고    scopus 로고
    • Structural diversity of strigolactones and their distribution in the plant kingdom
    • Xie, X. (2016). Structural diversity of strigolactones and their distribution in the plant kingdom. J. Pestic. Sci. 41, 175–180. doi: 10.1584/jpestics.J16-02
    • (2016) J. Pestic. Sci , vol.41 , pp. 175-180
    • Xie, X.1
  • 116
    • 77954962842 scopus 로고    scopus 로고
    • The strigolactone story
    • Xie, X., Yoneyama, K., and Yoneyama, K. (2010). The strigolactone story. Annu. Rev. Phytopathol. 48, 93–117. doi: 10.1146/annurev-phyto-073009-114453
    • (2010) Annu. Rev. Phytopathol , vol.48 , pp. 93-117
    • Xie, X.1    Yoneyama, K.2    Yoneyama, K.3
  • 117
    • 84938989387 scopus 로고    scopus 로고
    • The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.)
    • Xu, J., Zha, M., Li, Y., Ding, Y., Chen, L., Ding, C., et al. (2015). The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep. 34, 1647–1662. doi: 10.1007/s00299-015-1815-8
    • (2015) Plant Cell Rep , vol.34 , pp. 1647-1662
    • Xu, J.1    Zha, M.2    Li, Y.3    Ding, Y.4    Chen, L.5    Ding, C.6
  • 118
    • 84861631166 scopus 로고    scopus 로고
    • How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?
    • Yoneyama, K., Xie, X., Kim, H., Kisugi, T., Nomura, T., Sekimoto, H., et al. (2012). How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235, 1197–1207. doi: 10.1007/s00425-011-1568-8
    • (2012) Planta , vol.235 , pp. 1197-1207
    • Yoneyama, K.1    Xie, X.2    Kim, H.3    Kisugi, T.4    Nomura, T.5    Sekimoto, H.6
  • 119
    • 84886403760 scopus 로고    scopus 로고
    • Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum
    • Yoneyama, K., Xie, X., Kisugi, T., Nomura, T., and Yoneyama, K. (2013). Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta 238, 885–894. doi: 10.1007/s00425-013-1943-8
    • (2013) Planta , vol.238 , pp. 885-894
    • Yoneyama, K.1    Xie, X.2    Kisugi, T.3    Nomura, T.4    Yoneyama, K.5
  • 120
    • 36849038444 scopus 로고    scopus 로고
    • Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites
    • Yoneyama, K., Xie, X., Kusumoto, D., Sekimoto, H., Sugimoto, Y., Takeuchi, Y., et al. (2007a). Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227, 125–132. doi: 10.1007/s00425-007-0600-5
    • (2007) Planta , vol.227 , pp. 125-132
    • Yoneyama, K.1    Xie, X.2    Kusumoto, D.3    Sekimoto, H.4    Sugimoto, Y.5    Takeuchi, Y.6
  • 121
    • 33847319728 scopus 로고    scopus 로고
    • Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites
    • Yoneyama, K., Yoneyama, K., Takeuchi, Y., and Sekimoto, H. (2007b). Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225, 1031–1038. doi: 10.1007/s00425-006-0410-1
    • (2007) Planta , vol.225 , pp. 1031-1038
    • Yoneyama, K.1    Yoneyama, K.2    Takeuchi, Y.3    Sekimoto, H.4
  • 122
    • 47249159847 scopus 로고    scopus 로고
    • Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants
    • Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., et al. (2008). Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol. 179, 484–494. doi: 10.1111/j.1469-8137.2008.02462.x
    • (2008) New Phytol , vol.179 , pp. 484-494
    • Yoneyama, K.1    Xie, X.2    Sekimoto, H.3    Takeuchi, Y.4    Ogasawara, S.5    Akiyama, K.6
  • 124
    • 84886480437 scopus 로고    scopus 로고
    • Strigolactone biosynthesis and biology
    • F. J. de Bruijn Hoboken, NJ: John Wiley & Sons, Inc
    • Zhang, Y., Haider, I., Ruyter-Spira, C., and Bouwmeester, H. J. (2013). “Strigolactone biosynthesis and biology,” in Molecular Microbial Ecology of the Rhizosphere, Vol. 1 and 2, ed. F. J. de Bruijn (Hoboken, NJ: John Wiley & Sons, Inc.). doi: 10.1002/9781118297674.ch33
    • (2013) Molecular Microbial Ecology of the Rhizosphere , vol.1-2
    • Zhang, Y.1    Haider, I.2    Ruyter-Spira, C.3    Bouwmeester, H.J.4
  • 126
    • 84921022340 scopus 로고    scopus 로고
    • Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis
    • Zhang, Y., van Dijk, A. D. J., Scaffidi, A., Flematti, G. R., Hofmann, M., Charnikhova, T., et al. (2014). Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10, 1028–1033. doi: 10.1038/nchembio.1660
    • (2014) Nat. Chem. Biol , vol.10 , pp. 1028-1033
    • Zhang, Y.1    Van Dijk, A.D.J.2    Scaffidi, A.3    Flematti, G.R.4    Hofmann, M.5    Charnikhova, T.6
  • 127
    • 84874661987 scopus 로고    scopus 로고
    • Crystal structures of two phytohormone signal-transducing α/β hydrolases: Karrikin-signaling KAI2 and strigolactone-signaling DWARF14
    • Zhao, L.-H., Zhou, X. E., Wu, Z.-S., Yi, W., Xu, Y., Li, S., et al. (2013). Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23, 436–439. doi: 10.1038/cr.2013.19
    • (2013) Cell Res , vol.23 , pp. 436-439
    • Zhao, L.-H.1    Zhou, X.E.2    Wu, Z.-S.3    Yi, W.4    Xu, Y.5    Li, S.6
  • 128
    • 84946500797 scopus 로고    scopus 로고
    • Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3
    • Zhao, L.-H., Zhou, X. E., Yi, W., Wu, Z., Liu, Y., Kang, Y., et al. (2015). Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res. 25, 1219–1236. doi: 10.1038/cr.2015.122
    • (2015) Cell Res , vol.25 , pp. 1219-1236
    • Zhao, L.-H.1    Zhou, X.E.2    Yi, W.3    Wu, Z.4    Liu, Y.5    Kang, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.