-
1
-
-
84919363337
-
Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro
-
Abe, S., Sado, A., Tanaka, K., Kisugi, T., Asami, K., Ota, S., et al. (2014). Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. U.S.A. 111, 18084–18089. doi: 10.1073/pnas.1410801111
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 18084-18089
-
-
Abe, S.1
Sado, A.2
Tanaka, K.3
Kisugi, T.4
Asami, K.5
Ota, S.6
-
2
-
-
20444471142
-
Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
-
Akiyama, K., Matsuzaki, K., and Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827. doi: 10.1038/nature03608
-
(2005)
Nature
, vol.435
, pp. 824-827
-
-
Akiyama, K.1
Matsuzaki, K.2
Hayashi, H.3
-
3
-
-
84928882976
-
Strigolactones, a novel carotenoid-derived plant hormone
-
Al-Babili, S., and Bouwmeester, H. J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66, 161–186. doi: 10.1146/annurev-arplant-043014-114759
-
(2015)
Annu. Rev. Plant Biol
, vol.66
, pp. 161-186
-
-
Al-Babili, S.1
Bouwmeester, H.J.2
-
4
-
-
84858301666
-
The path from β-carotene to carlactone, a strigolactone-like plant hormone
-
Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., et al. (2012). The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335, 1348–1351. doi: 10.1126/science.1218094
-
(2012)
Science
, vol.335
, pp. 1348-1351
-
-
Alder, A.1
Jamil, M.2
Marzorati, M.3
Bruno, M.4
Vermathen, M.5
Bigler, P.6
-
5
-
-
84891597003
-
ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination
-
Arc, E., Sechet, J., Corbineau, F., Rajjou, L., and Marion-Poll, A. (2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 4:63. doi: 10.3389/fpls.2013.00063
-
(2013)
Front. Plant Sci
, vol.4
, pp. 63
-
-
Arc, E.1
Sechet, J.2
Corbineau, F.3
Rajjou, L.4
Marion-Poll, A.5
-
6
-
-
34548502219
-
DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice
-
Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., et al. (2007). DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019–1029. doi: 10.1111/j.1365-313X.2007.03210.x
-
(2007)
Plant J
, vol.51
, pp. 1019-1029
-
-
Arite, T.1
Iwata, H.2
Ohshima, K.3
Maekawa, M.4
Nakajima, M.5
Kojima, M.6
-
7
-
-
68949130180
-
D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers
-
Arite, T., Umehara, M., Ishikawa, S., Hanada, A., Maekawa, M., Yamaguchi, S., et al. (2009). d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 50, 1416–1424. doi: 10.1093/pcp/pcp091
-
(2009)
Plant Cell Physiol
, vol.50
, pp. 1416-1424
-
-
Arite, T.1
Umehara, M.2
Ishikawa, S.3
Hanada, A.4
Maekawa, M.5
Yamaguchi, S.6
-
8
-
-
53749094434
-
Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (Sitiens)
-
Aroca, R., del Mar Alguacil, M., Vernieri, P., and Ruiz-Lozano, J. M. (2008). Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (Sitiens). Microb. Ecol. 56, 704–719. doi: 10.1007/s00248-008-9390-y
-
(2008)
Microb. Ecol
, vol.56
, pp. 704-719
-
-
Aroca, R.1
Del Mar Alguacil, M.2
Vernieri, P.3
Ruiz-Lozano, J.M.4
-
9
-
-
84872379795
-
Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants
-
Aroca, R., Ruiz-Lozano, J. M., Zamarreño, ÁM., Paz, J. A., García-Mina, J. M., Pozo, M. J., et al. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170, 47–55. doi: 10.1016/j.jplph.2012.08.020
-
(2013)
J. Plant Physiol
, vol.170
, pp. 47-55
-
-
Aroca, R.1
Ruiz-Lozano, J.M.2
Zamarreño, Á.M.3
Paz, J.A.4
García-Mina, J.M.5
Pozo, M.J.6
-
10
-
-
33646145513
-
Plant carotenoid cleavage oxygenases and their apocarotenoid products
-
Auldridge, M. E., McCarty, D. R., and Klee, H. J. (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol. 9, 315–321. doi: 10.1016/j.pbi.2006.03.005
-
(2006)
Curr. Opin. Plant Biol
, vol.9
, pp. 315-321
-
-
Auldridge, M.E.1
McCarty, D.R.2
Klee, H.J.3
-
11
-
-
84906771565
-
Strigolactone signalling: Standing on the shoulders of DWARFs
-
Bennett, T., and Leyser, O. (2014). Strigolactone signalling: standing on the shoulders of DWARFs. Curr. Opin. Plant Biol. 22, 7–13. doi: 10.1016/j.pbi.2014.08.001
-
(2014)
Curr. Opin. Plant Biol
, vol.22
, pp. 7-13
-
-
Bennett, T.1
Leyser, O.2
-
12
-
-
33645011772
-
The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport
-
Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C., and Leyser, O. (2006). The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16, 553–563. doi: 10.1016/j.cub.2006.01.058
-
(2006)
Curr. Biol
, vol.16
, pp. 553-563
-
-
Bennett, T.1
Sieberer, T.2
Willett, B.3
Booker, J.4
Luschnig, C.5
Leyser, O.6
-
13
-
-
33745191953
-
Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria
-
Besserer, A., Puech-Pagès, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., et al. (2006). Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4:e226. doi: 10.1371/journal.pbio.0040226
-
(2006)
Plos Biol
, vol.4
-
-
Besserer, A.1
Puech-Pagès, V.2
Kiefer, P.3
Gomez-Roldan, V.4
Jauneau, A.5
Roy, S.6
-
14
-
-
84878363786
-
Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula
-
Bonneau, L., Huguet, S., Wipf, D., Pauly, N., and Truong, H.-N. (2013). Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol. 199, 188–202. doi: 10.1111/nph.12234
-
(2013)
New Phytol
, vol.199
, pp. 188-202
-
-
Bonneau, L.1
Huguet, S.2
Wipf, D.3
Pauly, N.4
Truong, H.-N.5
-
15
-
-
3342920134
-
MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule
-
Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H., and Leyser, O. (2004). MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14, 1232–1238. doi: 10.1016/j.cub.2004.06.061
-
(2004)
Curr. Biol
, vol.14
, pp. 1232-1238
-
-
Booker, J.1
Auldridge, M.2
Wills, S.3
McCarty, D.4
Klee, H.5
Leyser, O.6
-
16
-
-
20044371180
-
MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone
-
Booker, J., Sieberer, T., Wright, W., Williamson, L., Willett, B., Stirnberg, P., et al. (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 8, 443–449. doi: 10.1016/j.devcel.2005.01.009
-
(2005)
Dev. Cell
, vol.8
, pp. 443-449
-
-
Booker, J.1
Sieberer, T.2
Wright, W.3
Williamson, L.4
Willett, B.5
Stirnberg, P.6
-
17
-
-
84878568452
-
ABA transport and transporters
-
Boursiac, Y., Léran, S., Corratgé-Faillie, C., Gojon, A., Krouk, G., and Lacombe, B. (2013). ABA transport and transporters. Trends Plant Sci. 18, 325–333. doi: 10.1016/j.tplants.2013.01.007
-
(2013)
Trends Plant Sci
, vol.18
, pp. 325-333
-
-
Boursiac, Y.1
Léran, S.2
Corratgé-Faillie, C.3
Gojon, A.4
Krouk, G.5
Lacombe, B.6
-
18
-
-
34248176804
-
Rhizosphere communication of plants, parasitic plants and AM fungi
-
Bouwmeester, H. J., Roux, C., Lopez-Raez, J. A., and Bécard, G. (2007). Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12, 224–230. doi: 10.1016/j.tplants.2007.03.009
-
(2007)
Trends Plant Sci
, vol.12
, pp. 224-230
-
-
Bouwmeester, H.J.1
Roux, C.2
Lopez-Raez, J.A.3
Bécard, G.4
-
19
-
-
66149099230
-
Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis
-
Brewer, P. B., Dun, E. A., Ferguson, B. J., Rameau, C., and Beveridge, C. A. (2009). Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol. 150, 482–493. doi: 10.1104/pp.108.134783
-
(2009)
Plant Physiol
, vol.150
, pp. 482-493
-
-
Brewer, P.B.1
Dun, E.A.2
Ferguson, B.J.3
Rameau, C.4
Beveridge, C.A.5
-
20
-
-
84971556336
-
LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis
-
Brewer, P. B., Yoneyama, K., Filardo, F., Meyers, E., Scaffidi, A., Frickey, T., et al. (2016). LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 113, 6301–6306. doi: 10.1073/pnas.1601729113
-
(2016)
Proc. Natl. Acad. Sci. U.S.A.
, vol.113
, pp. 6301-6306
-
-
Brewer, P.B.1
Yoneyama, K.2
Filardo, F.3
Meyers, E.4
Scaffidi, A.5
Frickey, T.6
-
21
-
-
84891764933
-
Regulation of drought tolerance by the F-box protein MAX2 in arabidopsis
-
Bu, Q., Lv, T., Shen, H., Luong, P., Wang, J., Wang, Z., et al. (2014). Regulation of drought tolerance by the F-box protein MAX2 in arabidopsis. Plant Physiol. 164, 424–439. doi: 10.1104/pp.113.226837
-
(2014)
Plant Physiol
, vol.164
, pp. 424-439
-
-
Bu, Q.1
Lv, T.2
Shen, H.3
Luong, P.4
Wang, J.5
Wang, Z.6
-
22
-
-
85029160605
-
-
[accessed August 2, 2017]
-
Bythell-Douglas, R., Rothfels, C. J., Stevenson, D. W. D., Graham, S. W., Wong, G. K.-S., Nelson, D. C., et al. (2017). The Complex Origins of Strigolactone Signalling in Land Plants. Available at: http://www.biorxiv.org/content/early/2017/01/25/102715 [accessed August 2, 2017].
-
(2017)
The Complex Origins of Strigolactone Signalling in Land Plants
-
-
Bythell-Douglas, R.1
Rothfels, C.J.2
Stevenson, D.W.D.3
Graham, S.W.4
Wong, G.K.5
Nelson, D.C.6
-
24
-
-
0036443922
-
Biomass production, transpiration rate and endogenous abscisic acid levels in grafts of flacca and wild-type tomato (Lycopersicon esculentum)
-
Chen, G., Lips, S. H., and Sagi, M. (2002). Biomass production, transpiration rate and endogenous abscisic acid levels in grafts of flacca and wild-type tomato (Lycopersicon esculentum). Funct. Plant Biol. 29, 1329–1335. doi: 10.1071/PP01263
-
(2002)
Funct. Plant Biol
, vol.29
, pp. 1329-1335
-
-
Chen, G.1
Lips, S.H.2
Sagi, M.3
-
25
-
-
84893432057
-
The interaction between strigolactones and other plant hormones in the regulation of plant development
-
Cheng, X., Ruyter-Spira, C., and Bouwmeester, H. (2013). The interaction between strigolactones and other plant hormones in the regulation of plant development. Front. Plant Sci. 4:199. doi: 10.3389/fpls.2013.00199
-
(2013)
Front. Plant Sci
, vol.4
, pp. 199
-
-
Cheng, X.1
Ruyter-Spira, C.2
Bouwmeester, H.3
-
26
-
-
84899132374
-
Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis
-
Chevalier, F., Nieminen, K., Sánchez-Ferrero, J. C., Rodríguez, M. L., Chagoyen, M., Hardtke, C. S., et al. (2014). Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26, 1134–1150. doi: 10.1105/tpc.114.122903
-
(2014)
Plant Cell
, vol.26
, pp. 1134-1150
-
-
Chevalier, F.1
Nieminen, K.2
Sánchez-Ferrero, J.C.3
Rodríguez, M.L.4
Chagoyen, M.5
Hardtke, C.S.6
-
27
-
-
84956616973
-
Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front
-
Conn, C. E., and Nelson, D. C. (2015). Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front. Plant Sci. 6:1219. doi: 10.3389/fpls.2015.01219
-
(2015)
Plant Sci
, vol.6
, pp. 1219
-
-
Conn, C.E.1
Nelson, D.C.2
-
28
-
-
77956210642
-
Strigolactones enhance competition between shoot branches by dampening auxin transport
-
Crawford, S., Shinohara, N., Sieberer, T., Williamson, L., George, G., Hepworth, J., et al. (2010). Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137, 2905–2913. doi: 10.1242/dev.051987
-
(2010)
Development
, vol.137
, pp. 2905-2913
-
-
Crawford, S.1
Shinohara, N.2
Sieberer, T.3
Williamson, L.4
George, G.5
Hepworth, J.6
-
29
-
-
84897409397
-
MiRNAs in the crosstalk between phytohormone signalling pathways
-
Curaba, J., Singh, M. B., and Bhalla, P. L. (2014). miRNAs in the crosstalk between phytohormone signalling pathways. J. Exp. Bot. 65, 1425–1438. doi: 10.1093/jxb/eru002
-
(2014)
J. Exp. Bot
, vol.65
, pp. 1425-1438
-
-
Curaba, J.1
Singh, M.B.2
Bhalla, P.L.3
-
30
-
-
0032696471
-
Formation and breakdown of ABA
-
Cutler, A. J., and Krochko, J. E. (1999). Formation and breakdown of ABA. Trends Plant Sci. 4, 472–478. doi: 10.1016/S1360-1385(99)01497-1
-
(1999)
Trends Plant Sci
, vol.4
, pp. 472-478
-
-
Cutler, A.J.1
Krochko, J.E.2
-
31
-
-
0036188286
-
Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture
-
Davies, W. J., Wilkinson, S., and Loveys, B. (2002). Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol. 153, 449–460. doi: 10.1046/j.0028-646X.2001.00345.x
-
(2002)
New Phytol
, vol.153
, pp. 449-460
-
-
Davies, W.J.1
Wilkinson, S.2
Loveys, B.3
-
32
-
-
84922511864
-
From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula
-
De Cuyper, C., Fromentin, J., Yocgo, R. E., De Keyser, A., Guillotin, B., Kunert, K., et al. (2015). From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J. Exp. Bot. 66, 137–146. doi: 10.1093/jxb/eru404
-
(2015)
J. Exp. Bot
, vol.66
, pp. 137-146
-
-
De Cuyper, C.1
Fromentin, J.2
Yocgo, R.E.3
De Keyser, A.4
Guillotin, B.5
Kunert, K.6
-
33
-
-
84980328109
-
An histidine covalent receptor and butenolide complex mediates strigolactone perception
-
de Saint Germain, A., Clavé, G., Badet-Denisot, M.-A., Pillot, J.-P., Cornu, D., Le Caer, J.-P., et al. (2016). An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat. Chem. Biol. 12, 787–794. doi: 10.1038/nchembio.2147
-
(2016)
Nat. Chem. Biol
, vol.12
, pp. 787-794
-
-
De Saint Germain, A.1
Clavé, G.2
Badet-Denisot, M.-A.3
Pillot, J.-P.4
Cornu, D.5
Le Caer, J.-P.6
-
34
-
-
19544379019
-
The F-box protein TIR1 is an auxin receptor
-
Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445. doi: 10.1038/nature03543
-
(2005)
Nature
, vol.435
, pp. 441-445
-
-
Dharmasiri, N.1
Dharmasiri, S.2
Estelle, M.3
-
35
-
-
84925515727
-
Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment
-
Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., et al. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22, 4907–4921. doi: 10.1007/s11356-014-3754-2
-
(2015)
Environ. Sci. Pollut. Res
, vol.22
, pp. 4907-4921
-
-
Fahad, S.1
Hussain, S.2
Bano, A.3
Saud, S.4
Hassan, S.5
Shan, D.6
-
36
-
-
84926409098
-
Role of microRNAs in plant drought tolerance
-
Ferdous, J., Hussain, S. S., and Shi, B.-J. (2015). Role of microRNAs in plant drought tolerance. Plant Biotechnol. J. 13, 293–305. doi: 10.1111/pbi.12318
-
(2015)
Plant Biotechnol. J
, vol.13
, pp. 293-305
-
-
Ferdous, J.1
Hussain, S.S.2
Shi, B.-J.3
-
37
-
-
84964285768
-
Stereospecificity in strigolactone biosynthesis and perception
-
Flematti, G. G. R., Scaffidi, A., Waters, M. T. M., and Smith, S. S. M. (2016). Stereospecificity in strigolactone biosynthesis and perception. Planta 243, 1361–1373. doi: 10.1007/s00425-016-2523-5
-
(2016)
Planta
, vol.243
, pp. 1361-1373
-
-
Flematti, G.G.R.1
Scaffidi, A.2
Waters, M.T.M.3
Smith, S.S.M.4
-
38
-
-
4043144379
-
A compound from smoke that promotes seed germination
-
Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., and Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science 305:977. doi: 10.1126/science.1099944
-
(2004)
Science
, vol.305
, pp. 977
-
-
Flematti, G.R.1
Ghisalberti, E.L.2
Dixon, K.W.3
Trengove, R.D.4
-
39
-
-
22144451216
-
The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea
-
Foo, E., Bullier, E., Goussot, M., Foucher, F., Rameau, C., and Beveridge, C. A. (2005). The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17, 464–474. doi: 10.1105/tpc.104.026716
-
(2005)
Plant Cell
, vol.17
, pp. 464-474
-
-
Foo, E.1
Bullier, E.2
Goussot, M.3
Foucher, F.4
Rameau, C.5
Beveridge, C.A.6
-
40
-
-
84874695796
-
Strigolactones: Internal and external signals in plant symbioses?
-
Foo, E., Yoneyama, K., Hugill, C., Quittenden, L. J., and Reid, J. B. (2013). Strigolactones: internal and external signals in plant symbioses? Plant Signal. Behav. 8:e23168. doi: 10.4161/psb.23168
-
(2013)
Plant Signal. Behav
, vol.8
-
-
Foo, E.1
Yoneyama, K.2
Hugill, C.3
Quittenden, L.J.4
Reid, J.B.5
-
41
-
-
79959898336
-
ABA-mediated transcriptional regulation in response to osmotic stress in plants
-
Fujita, Y., Fujita, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124, 509–525. doi: 10.1007/s10265-011-0412-3
-
(2011)
J. Plant Res
, vol.124
, pp. 509-525
-
-
Fujita, Y.1
Fujita, M.2
Shinozaki, K.3
Yamaguchi-Shinozaki, K.4
-
42
-
-
51649096075
-
Strigolactone inhibition of shoot branching
-
Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J.-P., et al. (2008). Strigolactone inhibition of shoot branching. Nature 455, 189–194. doi: 10.1038/nature07271
-
(2008)
Nature
, vol.455
, pp. 189-194
-
-
Gomez-Roldan, V.1
Fermas, S.2
Brewer, P.B.3
Puech-Pagès, V.4
Dun, E.A.5
Pillot, J.-P.6
-
43
-
-
79960035423
-
Early transcriptional defense responses in Arabidopsis cell suspension culture under high-light conditions
-
Gonzalez-Perez, S., Gutierrez, J., Garcia-Garcia, F., Osuna, D., Dopazo, J., Lorenzo, O., et al. (2011). Early transcriptional defense responses in Arabidopsis cell suspension culture under high-light conditions. Plant Physiol. 156, 1439–1456. doi: 10.1104/pp.111.177766
-
(2011)
Plant Physiol
, vol.156
, pp. 1439-1456
-
-
Gonzalez-Perez, S.1
Gutierrez, J.2
Garcia-Garcia, F.3
Osuna, D.4
Dopazo, J.5
Lorenzo, O.6
-
44
-
-
84892589903
-
Positive regulatory role of strigolactone in plant responses to drought and salt stress
-
Ha, C. V., Leyva-González, M. A., Osakabe, Y., Tran, U. T., Nishiyama, R., Watanabe, Y., et al. (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. U.S.A. 111, 851–856. doi: 10.1073/pnas.1322135111
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 851-856
-
-
Ha, C.V.1
Leyva-González, M.A.2
Osakabe, Y.3
Tran, U.T.4
Nishiyama, R.5
Watanabe, Y.6
-
45
-
-
84868514386
-
DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone
-
Hamiaux, C., Drummond, R. S. M., Janssen, B. J., Ledger, S. E., Cooney, J. M., Newcomb, R. D., et al. (2012). DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22, 2032–2036. doi: 10.1016/j.cub.2012.08.007
-
(2012)
Curr. Biol
, vol.22
, pp. 2032-2036
-
-
Hamiaux, C.1
Drummond, R.S.M.2
Janssen, B.J.3
Ledger, S.E.4
Cooney, J.M.5
Newcomb, R.D.6
-
46
-
-
70349223008
-
Interactions between auxin and strigolactone in shoot branching control
-
Hayward, A., Stirnberg, P., Beveridge, C., and Leyser, O. (2009). Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 151, 400–412. doi: 10.1104/pp.109.137646
-
(2009)
Plant Physiol
, vol.151
, pp. 400-412
-
-
Hayward, A.1
Stirnberg, P.2
Beveridge, C.3
Leyser, O.4
-
47
-
-
0032816988
-
Electric signaling and pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants
-
Herde, O., Pena Cortes, H., Wasternack, Willmitzer L., and Fisahn, J. (1999). Electric signaling and pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol. 119, 213–218. doi: 10.1104/pp.119.1.213
-
(1999)
Plant Physiol.
, vol.119
, pp. 213-218
-
-
Herde, O.1
Pena Cortes, H.2
Wasternack, W.L.3
Fisahn, J.4
-
48
-
-
34447509646
-
Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza
-
Herrera-Medina, M. J., Steinkellner, S., Vierheilig, H., Ocampo Bote, J. A., and García Garrido, J. M. (2007). Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol. 175, 554–564. doi: 10.1111/j.1469-8137.2007.02107.x
-
(2007)
New Phytol
, vol.175
, pp. 554-564
-
-
Herrera-Medina, M.J.1
Steinkellner, S.2
Vierheilig, H.3
Ocampo Bote, J.A.4
García Garrido, J.M.5
-
49
-
-
84878960827
-
The root of ABA action in environmental stress response
-
Hong, J. H., Seah, S. W., and Xu, J. (2013). The root of ABA action in environmental stress response. Plant Cell Rep. 32, 971–983. doi: 10.1007/s00299-013-1439-9
-
(2013)
Plant Cell Rep
, vol.32
, pp. 971-983
-
-
Hong, J.H.1
Seah, S.W.2
Xu, J.3
-
50
-
-
84958012526
-
Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition
-
Ito, S., Ito, K., Abeta, N., Takahashi, R., Sasaki, Y., and Yajima, S. (2016). Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition. Plant Signal. Behav. 11:e1126031. doi: 10.1080/15592324.2015.1126031
-
(2016)
Plant Signal. Behav
, vol.11
-
-
Ito, S.1
Ito, K.2
Abeta, N.3
Takahashi, R.4
Sasaki, Y.5
Yajima, S.6
-
51
-
-
84925625868
-
Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis
-
Ito, S., Nozoye, T., Sasaki, E., Imai, M., Shiwa, Y., Shibata-Hatta, M., et al. (2015). Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis. PLoS ONE 10:e0119724. doi: 10.1371/journal.pone.0119724
-
(2015)
Plos ONE
, vol.10
-
-
Ito, S.1
Nozoye, T.2
Sasaki, E.3
Imai, M.4
Shiwa, Y.5
Shibata-Hatta, M.6
-
52
-
-
79960040444
-
Quantification of the relationship between strigolactones and striga hermonthica infection in rice under varying levels of nitrogen and phosphorus
-
Jamil, M., Charnikhova, T., Cardoso, C., Jamil, T., Ueno, K., Verstappen, F., et al. (2011). Quantification of the relationship between strigolactones and striga hermonthica infection in rice under varying levels of nitrogen and phosphorus. Weed Res. 51, 373–385. doi: 10.1111/j.1365-3180.2011.00847.x
-
(2011)
Weed Res
, vol.51
, pp. 373-385
-
-
Jamil, M.1
Charnikhova, T.2
Cardoso, C.3
Jamil, T.4
Ueno, K.5
Verstappen, F.6
-
53
-
-
84899064003
-
Effect of phosphate-based seed priming on strigolactone production and Striga hermonthica infection in cereals
-
Jamil, M., Charnikhova, T., Verstappen, F., Ali, Z., Wainwright, H., and Bouwmeester, H. J. (2014). Effect of phosphate-based seed priming on strigolactone production and Striga hermonthica infection in cereals. Weed Res. 54, 307–313. doi: 10.1111/wre.12067
-
(2014)
Weed Res
, vol.54
, pp. 307-313
-
-
Jamil, M.1
Charnikhova, T.2
Verstappen, F.3
Ali, Z.4
Wainwright, H.5
Bouwmeester, H.J.6
-
54
-
-
84898754392
-
Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis
-
Jia, K.-P., Luo, Q., He, S.-B., Lu, X.-D., and Yang, H.-Q. (2014). Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Mol. Plant 7, 528–540. doi: 10.1093/mp/sst093
-
(2014)
Mol. Plant
, vol.7
, pp. 528-540
-
-
Jia, K.-P.1
Luo, Q.2
He, S.-B.3
Lu, X.-D.4
Yang, H.-Q.5
-
55
-
-
84890449326
-
DWARF 53 acts as a repressor of strigolactone signalling in rice
-
Jiang, L., Liu, X., Xiong, G., Liu, H., Chen, F., Wang, L., et al. (2013). DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504, 401–405. doi: 10.1038/nature12870
-
(2013)
Nature
, vol.504
, pp. 401-405
-
-
Jiang, L.1
Liu, X.2
Xiong, G.3
Liu, H.4
Chen, F.5
Wang, L.6
-
56
-
-
33751071837
-
Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals
-
Johnson, X., Brcich, T., Dun, E. A., Goussot, M., Haurogné, K., Beveridge, C. A., et al. (2006). Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142, 1014–1026. doi: 10.1104/pp.106.087676
-
(2006)
Plant Physiol
, vol.142
, pp. 1014-1026
-
-
Johnson, X.1
Brcich, T.2
Dun, E.A.3
Goussot, M.4
Haurogné, K.5
Beveridge, C.A.6
-
57
-
-
78650751473
-
Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis
-
Kapulnik, Y., Delaux, P.-M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., et al. (2011). Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233, 209–216. doi: 10.1007/s00425-010-1310-y
-
(2011)
Planta
, vol.233
, pp. 209-216
-
-
Kapulnik, Y.1
Delaux, P.-M.2
Resnick, N.3
Mayzlish-Gati, E.4
Wininger, S.5
Bhattacharya, C.6
-
58
-
-
84866412775
-
The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis
-
Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., et al. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 196, 535–547. doi: 10.1111/j.1469-8137.2012.04265.x
-
(2012)
New Phytol
, vol.196
, pp. 535-547
-
-
Kohlen, W.1
Charnikhova, T.2
Lammers, M.3
Pollina, T.4
Tóth, P.5
Haider, I.6
-
59
-
-
84939530261
-
Cellular events of strigolactone signalling and their crosstalk with auxin in roots
-
Koltai, H. (2015). Cellular events of strigolactone signalling and their crosstalk with auxin in roots. J. Exp. Bot. 66, 4855–4861. doi: 10.1093/jxb/erv178
-
(2015)
J. Exp. Bot
, vol.66
, pp. 4855-4861
-
-
Koltai, H.1
-
60
-
-
77952546101
-
Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers
-
Koltai, H., Dor, E., Hershenhorn, J., Joel, D. M., Weininger, S., Lekalla, S., et al. (2010). Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. J. Plant Growth Regul. 29, 129–136. doi: 10.1007/s00344-009-9122-7
-
(2010)
J. Plant Growth Regul
, vol.29
, pp. 129-136
-
-
Koltai, H.1
Dor, E.2
Hershenhorn, J.3
Joel, D.M.4
Weininger, S.5
Lekalla, S.6
-
61
-
-
84965017150
-
Strigolactones: Past, present and future
-
Koltai, H., and Prandi, C. (2016). Strigolactones: past, present and future. Planta 243, 1309-1309. doi: 10.1007/s00425-016-2541-3
-
(2016)
Planta
, vol.243
-
-
Koltai, H.1
Prandi, C.2
-
62
-
-
84858291479
-
A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching
-
Kretzschmar, T., Kohlen, W., Sasse, J., Borghi, L., Schlegel, M., Bachelier, J. B., et al. (2012). A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483, 341–344. doi: 10.1038/nature10873
-
(2012)
Nature
, vol.483
, pp. 341-344
-
-
Kretzschmar, T.1
Kohlen, W.2
Sasse, J.3
Borghi, L.4
Schlegel, M.5
Bachelier, J.B.6
-
63
-
-
0035986775
-
Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis
-
Linkohr, B. I., Williamson, L. C., Fitter, A. H., and Leyser, H. M. O. (2002). Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 29, 751–760. doi: 10.1046/j.1365-313X.2002.01251.x
-
(2002)
Plant J
, vol.29
, pp. 751-760
-
-
Linkohr, B.I.1
Williamson, L.C.2
Fitter, A.H.3
Leyser, H.M.O.4
-
64
-
-
84939993452
-
Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: Exploring the interaction between strigolactones and ABA under abiotic stress
-
Liu, J., He, H., Vitali, M., Visentin, I., Charnikhova, T., Haider, I., et al. (2015). Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241, 1435–1451. doi: 10.1007/s00425-015-2266-8
-
(2015)
Planta
, vol.241
, pp. 1435-1451
-
-
Liu, J.1
He, H.2
Vitali, M.3
Visentin, I.4
Charnikhova, T.5
Haider, I.6
-
65
-
-
84872606803
-
Signaling role of Strigolactones at the interface between plants, (Micro)organisms, and a changing environment
-
Liu, J., Lovisolo, C., Schubert, A., and Cardinale, F. (2013). Signaling role of Strigolactones at the interface between plants, (micro)organisms, and a changing environment. J. Plant Interact. 8, 17–33. doi: 10.1080/17429145.2012.750692
-
(2013)
J. Plant Interact
, vol.8
, pp. 17-33
-
-
Liu, J.1
Lovisolo, C.2
Schubert, A.3
Cardinale, F.4
-
66
-
-
84948960628
-
How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?
-
López-Ráez, J. A. (2016). How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243, 1375–1385. doi: 10.1007/s00425-015-2435-9
-
(2016)
Planta
, vol.243
, pp. 1375-1385
-
-
López-Ráez, J.A.1
-
67
-
-
43449116907
-
Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation
-
López-Ráez, J. A., Charnikhova, T., Gómez-Roldán, V., Matusova, R., Kohlen, W., De Vos, R., et al. (2008a). Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178, 863–874. doi: 10.1111/j.1469-8137.2008.02406.x
-
(2008)
New Phytol
, vol.178
, pp. 863-874
-
-
López-Ráez, J.A.1
Charnikhova, T.2
Gómez-Roldán, V.3
Matusova, R.4
Kohlen, W.5
De Vos, R.6
-
68
-
-
50449098990
-
Susceptibility of the tomato mutant high pigment-2 dg (Hp-2 dg) to Orobanche spp. infection
-
López-Ráez, J. A., Charnikhova, T., Mulder, P., Kohlen, W., Bino, R., Levin, I., et al. (2008b). Susceptibility of the tomato mutant high pigment-2 dg (hp-2 dg) to Orobanche spp. infection. J. Agric. Food Chem. 56, 6326–6332. doi: 10.1021/jf800760x
-
(2008)
J. Agric. Food Chem
, vol.56
, pp. 6326-6332
-
-
López-Ráez, J.A.1
Charnikhova, T.2
Mulder, P.3
Kohlen, W.4
Bino, R.5
Levin, I.6
-
69
-
-
77954159125
-
Does abscisic acid affect strigolactone biosynthesis?
-
López-Ráez, J. A., Kohlen, W., Charnikhova, T., Mulder, P., Undas, A. K., Sergeant, M. J., et al. (2010). Does abscisic acid affect strigolactone biosynthesis? New Phytol. 187, 343–354. doi: 10.1111/j.1469-8137.2010.03291.x
-
(2010)
New Phytol
, vol.187
, pp. 343-354
-
-
López-Ráez, J.A.1
Kohlen, W.2
Charnikhova, T.3
Mulder, P.4
Undas, A.K.5
Sergeant, M.J.6
-
70
-
-
84952781839
-
Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs
-
Manzi, M., Lado, J., Rodrigo, M. J., Zacarías, L., Arbona, V., and Gómez-Cadenas, A. (2015). Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs. Plant Cell Physiol. 56, 2457–2466. doi: 10.1093/pcp/pcv161
-
(2015)
Plant Cell Physiol
, vol.56
, pp. 2457-2466
-
-
Manzi, M.1
Lado, J.2
Rodrigo, M.J.3
Zacarías, L.4
Arbona, V.5
Gómez-Cadenas, A.6
-
71
-
-
84984595780
-
Gibberellin-abscisic acid balances during arbuscular mycorrhiza formation in tomato
-
Martín-Rodríguez, J. A., Huertas, R., Ho-Plágaro, T., Ocampo, J. A., Tureèková, V., Tarkowská, D., et al. (2016). Gibberellin-abscisic acid balances during arbuscular mycorrhiza formation in tomato. Front. Plant Sci. 7:1273. doi: 10.3389/fpls.2016.01273
-
(2016)
Front. Plant Sci
, vol.7
, pp. 1273
-
-
Martín-Rodríguez, J.A.1
Huertas, R.2
Ho-Plágaro, T.3
Ocampo, J.A.4
Tureèková, V.5
Tarkowská, D.6
-
72
-
-
84984644957
-
Perception and signaling of strigolactones
-
Marzec, M. (2016). Perception and signaling of strigolactones. Front. Plant Sci. 7:1260. doi: 10.3389/fpls.2016.01260
-
(2016)
Front. Plant Sci
, vol.7
, pp. 1260
-
-
Marzec, M.1
-
73
-
-
84925871047
-
In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of strigolactones in plants
-
Marzec, M., and Muszynska, A. (2015). In silico analysis of the genes encoding proteins that are involved in the biosynthesis of the RMS/MAX/D pathway revealed new roles of strigolactones in plants. Int. J. Mol. Sci. 16, 6757–6782. doi: 10.3390/ijms16046757
-
(2015)
Int. J. Mol. Sci
, vol.16
, pp. 6757-6782
-
-
Marzec, M.1
Muszynska, A.2
-
74
-
-
33644647072
-
The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. Are derived from the carotenoid pathway
-
Matusova, R., Rani, K., Verstappen, F. W. A., Franssen, M. C. R., Beale, M. H., and Bouwmeester, H. J. (2005). The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139, 920–934. doi: 10.1104/pp.105.061382
-
(2005)
Plant Physiol
, vol.139
, pp. 920-934
-
-
Matusova, R.1
Rani, K.2
Verstappen, F.W.A.3
Franssen, M.C.R.4
Beale, M.H.5
Bouwmeester, H.J.6
-
75
-
-
84868322847
-
Strigolactones are involved in root response to low phosphate conditions in Arabidopsis
-
Mayzlish-Gati, E., De-Cuyper, C., Goormachtig, S., Beeckman, T., Vuylsteke, M., Brewer, P. B., et al. (2012). Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol. 160, 1329–1341. doi: 10.1104/pp.112.202358
-
(2012)
Plant Physiol
, vol.160
, pp. 1329-1341
-
-
Mayzlish-Gati, E.1
De-Cuyper, C.2
Goormachtig, S.3
Beeckman, T.4
Vuylsteke, M.5
Brewer, P.B.6
-
76
-
-
84926377659
-
The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA
-
Merilo, E., Jalakas, P., Kollist, H., and Brosché, M. (2015). The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA. Mol. Plant 8, 657–659. doi: 10.1016/j.molp.2015.01.014
-
(2015)
Mol. Plant
, vol.8
, pp. 657-659
-
-
Merilo, E.1
Jalakas, P.2
Kollist, H.3
Brosché, M.4
-
77
-
-
0034954756
-
Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal
-
Morris, S. E., Turnbull, C. G., Murfet, I. C., and Beveridge, C. A. (2001). Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol. 126, 1205–1213. doi: 10.1104/pp.126.3.1205
-
(2001)
Plant Physiol
, vol.126
, pp. 1205-1213
-
-
Morris, S.E.1
Turnbull, C.G.2
Murfet, I.C.3
Beveridge, C.A.4
-
78
-
-
84886242440
-
Molecular mechanism of strigolactone perception by DWARF14
-
Nakamura, H., Xue, Y.-L., Miyakawa, T., Hou, F., Qin, H.-M., Fukui, K., et al. (2013). Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4, 189–194. doi: 10.1038/ncomms3613
-
(2013)
Nat. Commun
, vol.4
, pp. 189-194
-
-
Nakamura, H.1
Xue, Y.-L.2
Miyakawa, T.3
Hou, F.4
Qin, H.-M.5
Fukui, K.6
-
79
-
-
79957699893
-
F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana
-
Nelson, D. C., Scaffidi, A., Dun, E. A., Waters, M. T., Flematti, G. R., Dixon, K. W., et al. (2011). F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 108, 8897–8902. doi: 10.1073/pnas.1100987108
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 8897-8902
-
-
Nelson, D.C.1
Scaffidi, A.2
Dun, E.A.3
Waters, M.T.4
Flematti, G.R.5
Dixon, K.W.6
-
80
-
-
84880258913
-
Responses of root architecture development to low phosphorus availability: A review
-
Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., and Zhang, Y. S. (2013). Responses of root architecture development to low phosphorus availability: a review. Ann. Bot. 112, 391–408. doi: 10.1093/aob/mcs285
-
(2013)
Ann. Bot
, vol.112
, pp. 391-408
-
-
Niu, Y.F.1
Chai, R.S.2
Jin, G.L.3
Wang, H.4
Tang, C.X.5
Zhang, Y.S.6
-
81
-
-
79961020658
-
Root developmental adaptation to phosphate starvation: Better safe than sorry
-
Péret, B., Clément, M., Nussaume, L., and Desnos, T. (2011). Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci. 16, 442–450. doi: 10.1016/j.tplants.2011.05.006
-
(2011)
Trends Plant Sci
, vol.16
, pp. 442-450
-
-
Péret, B.1
Clément, M.2
Nussaume, L.3
Desnos, T.4
-
82
-
-
84914164065
-
Root architecture responses: In search of phosphate
-
Péret, B., Desnos, T., Jost, R., Kanno, S., Berkowitz, O., and Nussaume, L. (2014). Root architecture responses: in search of phosphate. Plant Physiol. 166, 1713–1723. doi: 10.1104/pp.114.244541
-
(2014)
Plant Physiol
, vol.166
, pp. 1713-1723
-
-
Péret, B.1
Desnos, T.2
Jost, R.3
Kanno, S.4
Berkowitz, O.5
Nussaume, L.6
-
83
-
-
62549165835
-
Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor
-
Pérez-Torres, C.-A., López-Bucio, J., Cruz-Ramírez, A., Ibarra-Laclette, E., Dharmasiri, S., Estelle, M., et al. (2008). Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20, 3258–3272. doi: 10.1105/tpc.108.058719
-
(2008)
Plant Cell
, vol.20
, pp. 3258-3272
-
-
Pérez-Torres, C.-A.1
López-Bucio, J.2
Cruz-Ramírez, A.3
Ibarra-Laclette, E.4
Dharmasiri, S.5
Estelle, M.6
-
84
-
-
70350462743
-
Control of bud activation by an auxin transport switch
-
Prusinkiewicz, P., Crawford, S., Smith, R. S., Ljung, K., Bennett, T., Ongaro, V., et al. (2009). Control of bud activation by an auxin transport switch. Proc. Natl. Acad. Sci. U.S.A. 106, 17431–17436. doi: 10.1073/pnas.0906696106
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 17431-17436
-
-
Prusinkiewicz, P.1
Crawford, S.2
Smith, R.S.3
Ljung, K.4
Bennett, T.5
Ongaro, V.6
-
85
-
-
84955213074
-
Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant
-
Ruiz-Lozano, J. M., Aroca, R., Zamarreño, ÁM., Molina, S., Andreo-Jiménez, B., Porcel, R., et al. (2016). Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant. Cell Environ. 39, 441–452. doi: 10.1111/pce.12631
-
(2016)
Cell Environ
, vol.39
, pp. 441-452
-
-
Ruiz-Lozano, J.M.1
Aroca, R.2
Zamarreño, Á.M.3
Molina, S.4
Reo-Jiménez, B.5
Porcel, R.6
-
86
-
-
84873128093
-
The biology of strigolactones
-
Ruyter-Spira, C., Al-Babili, S., van der Krol, S., and Bouwmeester, H. (2013). The biology of strigolactones. Trends Plant Sci. 18, 72–83. doi: 10.1016/j.tplants.2012.10.003
-
(2013)
Trends Plant Sci
, vol.18
, pp. 72-83
-
-
Ruyter-Spira, C.1
Al-Babili, S.2
Van Der Krol, S.3
Bouwmeester, H.4
-
87
-
-
84861191119
-
Exploring the molecular mechanism of karrikins and strigolactones
-
Scaffidi, A., Waters, M. T., Bond, C. S., Dixon, K. W., Smith, S. M., Ghisalberti, E. L., et al. (2012). Exploring the molecular mechanism of karrikins and strigolactones. Bioorg. Med. Chem. Lett. 22, 3743–3746. doi: 10.1016/j.bmcl.2012.04.016
-
(2012)
Bioorg. Med. Chem. Lett
, vol.22
, pp. 3743-3746
-
-
Scaffidi, A.1
Waters, M.T.2
Bond, C.S.3
Dixon, K.W.4
Smith, S.M.5
Ghisalberti, E.L.6
-
88
-
-
84884905503
-
Carlactone-independent seedling morphogenesis in Arabidopsis
-
Scaffidi, A., Waters, M. T., Ghisalberti, E. L., Dixon, K. W., Flematti, G. R., and Smith, S. M. (2013). Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J. 76, 1–9. doi: 10.1111/tpj.12265
-
(2013)
Plant J
, vol.76
, pp. 1-9
-
-
Scaffidi, A.1
Waters, M.T.2
Ghisalberti, E.L.3
Dixon, K.W.4
Flematti, G.R.5
Smith, S.M.6
-
89
-
-
8744286799
-
The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching
-
Schwartz, S. H., Qin, X., and Loewen, M. C. (2004). The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 279, 46940–46945. doi: 10.1074/jbc.M409004200
-
(2004)
J. Biol. Chem
, vol.279
, pp. 46940-46945
-
-
Schwartz, S.H.1
Qin, X.2
Loewen, M.C.3
-
90
-
-
84893422174
-
Carlactone is an endogenous biosynthetic precursor for strigolactones
-
Seto, Y., Sado, A., Asami, K., Hanada, A., Umehara, M., Akiyama, K., et al. (2014). Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl. Acad. Sci. U.S.A. 111, 1640–1645. doi: 10.1073/pnas.1314805111
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 1640-1645
-
-
Seto, Y.1
Sado, A.2
Asami, K.3
Hanada, A.4
Umehara, M.5
Akiyama, K.6
-
91
-
-
84903540898
-
Strigolactone biosynthesis and perception
-
Seto, Y., and Yamaguchi, S. (2014). Strigolactone biosynthesis and perception. Curr. Opin. Plant Biol. 21, 1–6. doi: 10.1016/j.pbi.2014.06.001
-
(2014)
Curr. Opin. Plant Biol
, vol.21
, pp. 1-6
-
-
Seto, Y.1
Yamaguchi, S.2
-
92
-
-
84903626362
-
Signalling and responses to strigolactones and karrikins
-
Smith, S. M., and Li, J. (2014). Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol. 21, 23–29. doi: 10.1016/j.pbi.2014.06.003
-
(2014)
Curr. Opin. Plant Biol
, vol.21
, pp. 23-29
-
-
Smith, S.M.1
Li, J.2
-
93
-
-
18144377299
-
The decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development
-
Snowden, K. C., Simkin, A. J., Janssen, B. J., Templeton, K. R., Loucas, H. M., Simons, J. L., et al. (2005). The decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17, 746–759. doi: 10.1105/tpc.104.027714
-
(2005)
Plant Cell
, vol.17
, pp. 746-759
-
-
Snowden, K.C.1
Simkin, A.J.2
Janssen, B.J.3
Templeton, K.R.4
Loucas, H.M.5
Simons, J.L.6
-
94
-
-
0038722744
-
MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea
-
Sorefan, K., Booker, J., Haurogné, K., Goussot, M., Bainbridge, K., Foo, E., et al. (2003). MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17, 1469–1474. doi: 10.1101/gad.256603
-
(2003)
Genes Dev
, vol.17
, pp. 1469-1474
-
-
Sorefan, K.1
Booker, J.2
Haurogné, K.3
Goussot, M.4
Bainbridge, K.5
Foo, E.6
-
95
-
-
71849095140
-
First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa)
-
Soto, M. J., Fernández-Aparicio, M., Castellanos-Morales, V., García-Garrido, J. M., Ocampo, J. A., Delgado, M. J., et al. (2010). First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol. Biochem. 42, 383–385. doi: 10.1016/j.soilbio.2009.11.007
-
(2010)
Soil Biol. Biochem
, vol.42
, pp. 383-385
-
-
Soto, M.J.1
Fernández-Aparicio, M.2
Castellanos-Morales, V.3
García-Garrido, J.M.4
Ocampo, J.A.5
Delgado, M.J.6
-
96
-
-
84949668181
-
SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis
-
Soundappan, I., Bennett, T., Morffy, N., Liang, Y., Stanga, J. P., Abbas, A., et al. (2015). SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27, 3143–3159. doi: 10.1105/tpc.15.00562
-
(2015)
Plant Cell
, vol.27
, pp. 3143-3159
-
-
Soundappan, I.1
Bennett, T.2
Morffy, N.3
Liang, Y.4
Stanga, J.P.5
Abbas, A.6
-
97
-
-
84883230977
-
SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis
-
Stanga, J. P., Smith, S. M., Briggs, W. R., and Nelson, D. C. (2013). SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol. 163, 318–330. doi: 10.1104/pp.113.221259
-
(2013)
Plant Physiol
, vol.163
, pp. 318-330
-
-
Stanga, J.P.1
Smith, S.M.2
Briggs, W.R.3
Nelson, D.C.4
-
98
-
-
33947682757
-
MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching
-
Stirnberg, P., Furner, I. J., and Ottoline Leyser, H. M. (2007). MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50, 80–94. doi: 10.1111/j.1365-313X.2007.03032.x
-
(2007)
Plant J
, vol.50
, pp. 80-94
-
-
Stirnberg, P.1
Furner, I.J.2
Ottoline Leyser, H.M.3
-
99
-
-
0036336159
-
MAX1 and MAX2 control shoot lateral branching in Arabidopsis
-
Stirnberg, P., van De Sande, K., and Leyser, H. M. O. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129, 1131–1141. doi: 10.1105/tpc.13.8.1779
-
(2002)
Development
, vol.129
, pp. 1131-1141
-
-
Stirnberg, P.1
Van De Sande, K.2
Leyser, H.M.O.3
-
100
-
-
84907776656
-
Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice
-
Sun, H., Tao, J., Liu, S., Huang, S., Chen, S., Xie, X., et al. (2014). Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J. Exp. Bot. 65, 6735–6746. doi: 10.1093/jxb/eru029
-
(2014)
J. Exp. Bot
, vol.65
, pp. 6735-6746
-
-
Sun, H.1
Tao, J.2
Liu, S.3
Huang, S.4
Chen, S.5
Xie, X.6
-
101
-
-
85027949122
-
Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system
-
Toh, S., Holbrook-Smith, D., Stokes, M. E., Tsuchiya, Y., and McCourt, P. (2014). Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. Chem. Biol. 21, 988–998. doi: 10.1016/j.chembiol.2014.07.005
-
(2014)
Chem. Biol
, vol.21
, pp. 988-998
-
-
Toh, S.1
Holbrook-Smith, D.2
Stokes, M.E.3
Tsuchiya, Y.4
McCourt, P.5
-
102
-
-
84939810413
-
Probing strigolactone receptors in Striga hermonthica with fluorescence
-
Tsuchiya, Y., Yoshimura, M., Sato, Y., Kuwata, K., Toh, S., Holbrook-Smith, D., et al. (2015). Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349, 864–868. doi: 10.1126/science.aab3831
-
(2015)
Science
, vol.349
, pp. 864-868
-
-
Tsuchiya, Y.1
Yoshimura, M.2
Sato, Y.3
Kuwata, K.4
Toh, S.5
Holbrook-Smith, D.6
-
103
-
-
34250822881
-
Gibberellin receptor and its role in gibberellin signaling in plants
-
Ueguchi-Tanaka, M., Nakajima, M., Motoyuki, A., and Matsuoka, M. (2007). Gibberellin receptor and its role in gibberellin signaling in plants. Annu. Rev. Plant Biol. 58, 183–198. doi: 10.1146/annurev.arplant.58.032806.103830
-
(2007)
Annu. Rev. Plant Biol
, vol.58
, pp. 183-198
-
-
Ueguchi-Tanaka, M.1
Nakajima, M.2
Motoyuki, A.3
Matsuoka, M.4
-
104
-
-
84930741399
-
Structural requirements of Strigolactones for shoot branching inhibition in rice and arabidopsis
-
Umehara, M., Cao, M., Akiyama, K., Akatsu, T., Seto, Y., Hanada, A., et al. (2015). Structural requirements of Strigolactones for shoot branching inhibition in rice and arabidopsis. Plant Cell Physiol. 56, 1059–1072. doi: 10.1093/pcp/pcv028
-
(2015)
Plant Cell Physiol
, vol.56
, pp. 1059-1072
-
-
Umehara, M.1
Cao, M.2
Akiyama, K.3
Akatsu, T.4
Seto, Y.5
Hanada, A.6
-
105
-
-
77954965001
-
Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice
-
Umehara, M., Hanada, A., Magome, H., Takeda-Kamiya, N., and Yamaguchi, S. (2010). Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 51, 1118–1126. doi: 10.1093/pcp/pcq084
-
(2010)
Plant Cell Physiol
, vol.51
, pp. 1118-1126
-
-
Umehara, M.1
Hanada, A.2
Magome, H.3
Takeda-Kamiya, N.4
Yamaguchi, S.5
-
106
-
-
51649112342
-
Inhibition of shoot branching by new terpenoid plant hormones
-
Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., et al. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200. doi: 10.1038/nature07272
-
(2008)
Nature
, vol.455
, pp. 195-200
-
-
Umehara, M.1
Hanada, A.2
Yoshida, S.3
Akiyama, K.4
Arite, T.5
Takeda-Kamiya, N.6
-
107
-
-
84988892473
-
Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato
-
Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter-Spira, C., Novák, O., et al. (2016). Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 212, 954–963. doi: 10.1111/nph.14190
-
(2016)
New Phytol
, vol.212
, pp. 954-963
-
-
Visentin, I.1
Vitali, M.2
Ferrero, M.3
Zhang, Y.4
Ruyter-Spira, C.5
Novák, O.6
-
108
-
-
84906065976
-
Strigolactones and the control of plant development: Lessons from shoot branching
-
Waldie, T., McCulloch, H., and Leyser, O. (2014). Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 79, 607–622. doi: 10.1111/tpj.12488
-
(2014)
Plant J
, vol.79
, pp. 607-622
-
-
Waldie, T.1
McCulloch, H.2
Leyser, O.3
-
109
-
-
84959135289
-
Strigolactone versus gibberellin signaling: Reemerging concepts?
-
Wallner, E.-S., López-Salmerón, V., and Greb, T. (2016). Strigolactone versus gibberellin signaling: reemerging concepts? Planta 243, 1339–1350. doi: 10.1007/s00425-016-2478-6
-
(2016)
Planta
, vol.243
, pp. 1339-1350
-
-
Wallner, E.-S.1
López-Salmerón, V.2
Greb, T.3
-
110
-
-
85009141772
-
Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants
-
Wani, S. H., Kumar, V., Shriram, V., and Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 4, 162–176. doi: 10.1016/j.cj.2016.01.010
-
(2016)
Crop J
, vol.4
, pp. 162-176
-
-
Wani, S.H.1
Kumar, V.2
Shriram, V.3
Sah, S.K.4
-
111
-
-
84863676736
-
The Arabidopsis ortholog of rice DWARF27 Acts upstream of MAX1 in the control of plant development by strigolactones
-
Waters, M. T., Brewer, P. B., Bussell, J. D., Smith, S. M., and Beveridge, C. A. (2012a). The Arabidopsis ortholog of rice DWARF27 Acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol. 159, 1073–1085. doi: 10.1104/pp.112.196253
-
(2012)
Plant Physiol
, vol.159
, pp. 1073-1085
-
-
Waters, M.T.1
Brewer, P.B.2
Bussell, J.D.3
Smith, S.M.4
Beveridge, C.A.5
-
112
-
-
85015050299
-
Strigolactone signaling and evolution
-
Waters, M. T., Gutjahr, C., Bennett, T., and Nelson, D. C. (2017). Strigolactone signaling and evolution. Annu. Rev. Plant Biol. 68, 291–322. doi: 10.1146/annurev-arplant-042916-040925
-
(2017)
Annu. Rev. Plant Biol
, vol.68
, pp. 291-322
-
-
Waters, M.T.1
Gutjahr, C.2
Bennett, T.3
Nelson, D.C.4
-
113
-
-
84864804907
-
Karrikins force a rethink of strigolactone mode of action
-
Waters, M. T., Scaffidi, A., Flematti, G. R., and Smith, S. M. (2012b). Karrikins force a rethink of strigolactone mode of action. Plant Signal. Behav. 7, 969–972. doi: 10.4161/psb.20977
-
(2012)
Plant Signal. Behav
, vol.7
, pp. 969-972
-
-
Waters, M.T.1
Scaffidi, A.2
Flematti, G.R.3
Smith, S.M.4
-
114
-
-
0036181615
-
ABA-based chemical signalling: The co-ordination of responses to stress in plants
-
Wilkinson, S., and Davies, W. J. (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant, Cell Environ. 25, 195–210. doi: 10.1046/j.0016-8025.2001.00824.x
-
(2002)
Plant, Cell Environ
, vol.25
, pp. 195-210
-
-
Wilkinson, S.1
Davies, W.J.2
-
115
-
-
85000542342
-
Structural diversity of strigolactones and their distribution in the plant kingdom
-
Xie, X. (2016). Structural diversity of strigolactones and their distribution in the plant kingdom. J. Pestic. Sci. 41, 175–180. doi: 10.1584/jpestics.J16-02
-
(2016)
J. Pestic. Sci
, vol.41
, pp. 175-180
-
-
Xie, X.1
-
116
-
-
77954962842
-
The strigolactone story
-
Xie, X., Yoneyama, K., and Yoneyama, K. (2010). The strigolactone story. Annu. Rev. Phytopathol. 48, 93–117. doi: 10.1146/annurev-phyto-073009-114453
-
(2010)
Annu. Rev. Phytopathol
, vol.48
, pp. 93-117
-
-
Xie, X.1
Yoneyama, K.2
Yoneyama, K.3
-
117
-
-
84938989387
-
The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.)
-
Xu, J., Zha, M., Li, Y., Ding, Y., Chen, L., Ding, C., et al. (2015). The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep. 34, 1647–1662. doi: 10.1007/s00299-015-1815-8
-
(2015)
Plant Cell Rep
, vol.34
, pp. 1647-1662
-
-
Xu, J.1
Zha, M.2
Li, Y.3
Ding, Y.4
Chen, L.5
Ding, C.6
-
118
-
-
84861631166
-
How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?
-
Yoneyama, K., Xie, X., Kim, H., Kisugi, T., Nomura, T., Sekimoto, H., et al. (2012). How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235, 1197–1207. doi: 10.1007/s00425-011-1568-8
-
(2012)
Planta
, vol.235
, pp. 1197-1207
-
-
Yoneyama, K.1
Xie, X.2
Kim, H.3
Kisugi, T.4
Nomura, T.5
Sekimoto, H.6
-
119
-
-
84886403760
-
Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum
-
Yoneyama, K., Xie, X., Kisugi, T., Nomura, T., and Yoneyama, K. (2013). Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta 238, 885–894. doi: 10.1007/s00425-013-1943-8
-
(2013)
Planta
, vol.238
, pp. 885-894
-
-
Yoneyama, K.1
Xie, X.2
Kisugi, T.3
Nomura, T.4
Yoneyama, K.5
-
120
-
-
36849038444
-
Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites
-
Yoneyama, K., Xie, X., Kusumoto, D., Sekimoto, H., Sugimoto, Y., Takeuchi, Y., et al. (2007a). Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227, 125–132. doi: 10.1007/s00425-007-0600-5
-
(2007)
Planta
, vol.227
, pp. 125-132
-
-
Yoneyama, K.1
Xie, X.2
Kusumoto, D.3
Sekimoto, H.4
Sugimoto, Y.5
Takeuchi, Y.6
-
121
-
-
33847319728
-
Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites
-
Yoneyama, K., Yoneyama, K., Takeuchi, Y., and Sekimoto, H. (2007b). Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225, 1031–1038. doi: 10.1007/s00425-006-0410-1
-
(2007)
Planta
, vol.225
, pp. 1031-1038
-
-
Yoneyama, K.1
Yoneyama, K.2
Takeuchi, Y.3
Sekimoto, H.4
-
122
-
-
47249159847
-
Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants
-
Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., et al. (2008). Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol. 179, 484–494. doi: 10.1111/j.1469-8137.2008.02462.x
-
(2008)
New Phytol
, vol.179
, pp. 484-494
-
-
Yoneyama, K.1
Xie, X.2
Sekimoto, H.3
Takeuchi, Y.4
Ogasawara, S.5
Akiyama, K.6
-
124
-
-
84886480437
-
Strigolactone biosynthesis and biology
-
F. J. de Bruijn Hoboken, NJ: John Wiley & Sons, Inc
-
Zhang, Y., Haider, I., Ruyter-Spira, C., and Bouwmeester, H. J. (2013). “Strigolactone biosynthesis and biology,” in Molecular Microbial Ecology of the Rhizosphere, Vol. 1 and 2, ed. F. J. de Bruijn (Hoboken, NJ: John Wiley & Sons, Inc.). doi: 10.1002/9781118297674.ch33
-
(2013)
Molecular Microbial Ecology of the Rhizosphere
, vol.1-2
-
-
Zhang, Y.1
Haider, I.2
Ruyter-Spira, C.3
Bouwmeester, H.J.4
-
125
-
-
84922645582
-
Engineering the plant rhizosphere
-
Zhang, Y., Ruyter-Spira, C., and Bouwmeester, H. J. (2015). Engineering the plant rhizosphere. Curr. Opin. Biotechnol. 32, 136–142. doi: 10.1016/j.copbio.2014.12.006
-
(2015)
Curr. Opin. Biotechnol
, vol.32
, pp. 136-142
-
-
Zhang, Y.1
Ruyter-Spira, C.2
Bouwmeester, H.J.3
-
126
-
-
84921022340
-
Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis
-
Zhang, Y., van Dijk, A. D. J., Scaffidi, A., Flematti, G. R., Hofmann, M., Charnikhova, T., et al. (2014). Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10, 1028–1033. doi: 10.1038/nchembio.1660
-
(2014)
Nat. Chem. Biol
, vol.10
, pp. 1028-1033
-
-
Zhang, Y.1
Van Dijk, A.D.J.2
Scaffidi, A.3
Flematti, G.R.4
Hofmann, M.5
Charnikhova, T.6
-
127
-
-
84874661987
-
Crystal structures of two phytohormone signal-transducing α/β hydrolases: Karrikin-signaling KAI2 and strigolactone-signaling DWARF14
-
Zhao, L.-H., Zhou, X. E., Wu, Z.-S., Yi, W., Xu, Y., Li, S., et al. (2013). Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 23, 436–439. doi: 10.1038/cr.2013.19
-
(2013)
Cell Res
, vol.23
, pp. 436-439
-
-
Zhao, L.-H.1
Zhou, X.E.2
Wu, Z.-S.3
Yi, W.4
Xu, Y.5
Li, S.6
-
128
-
-
84946500797
-
Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3
-
Zhao, L.-H., Zhou, X. E., Yi, W., Wu, Z., Liu, Y., Kang, Y., et al. (2015). Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res. 25, 1219–1236. doi: 10.1038/cr.2015.122
-
(2015)
Cell Res
, vol.25
, pp. 1219-1236
-
-
Zhao, L.-H.1
Zhou, X.E.2
Yi, W.3
Wu, Z.4
Liu, Y.5
Kang, Y.6
|