메뉴 건너뛰기




Volumn 149, Issue PB, 2015, Pages 767-776

A Projection Pursuit framework for supervised dimension reduction of high dimensional small sample datasets

Author keywords

Classification; Dimension reduction; Gene expression; Projection Pursuit

Indexed keywords

CLASSIFICATION (OF INFORMATION); MOLECULAR BIOLOGY;

EID: 85027943239     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.07.057     Document Type: Article
Times cited : (36)

References (83)
  • 4
    • 20044388557 scopus 로고    scopus 로고
    • From signatures to models. understanding cancer using microarrays
    • Segal E., Friedman N., Kaminski N., Regev A., Koller D. From signatures to models. understanding cancer using microarrays. Nat. Genet. 2005, 37(S):S38-S45.
    • (2005) Nat. Genet. , vol.37 , Issue.S , pp. S38-S45
    • Segal, E.1    Friedman, N.2    Kaminski, N.3    Regev, A.4    Koller, D.5
  • 5
    • 0033224771 scopus 로고    scopus 로고
    • Hyperspectral data analysis and supervised feature reduction via projection pursuit
    • Jimenez L., Landgrebe D. Hyperspectral data analysis and supervised feature reduction via projection pursuit. IEEE Trans. Geosci. Remote Sens. 1999, 37(6):2653-2667.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2653-2667
    • Jimenez, L.1    Landgrebe, D.2
  • 6
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces. implications for exploring gene and protein expression data
    • Clarke R., Ressom H.W., Wang A., Xuan J., Liu M.C., Gehan E.A., Wang Y. The properties of high-dimensional data spaces. implications for exploring gene and protein expression data. Nat. Rev. Cancer 2008, 8(1):37-49.
    • (2008) Nat. Rev. Cancer , vol.8 , Issue.1 , pp. 37-49
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3    Xuan, J.4    Liu, M.C.5    Gehan, E.A.6    Wang, Y.7
  • 7
    • 0035049111 scopus 로고    scopus 로고
    • On the "dimensionality curse" and the "self-similarity blessing"
    • Korn F., Pagel B., Faloutsos C. On the "dimensionality curse" and the "self-similarity blessing". IEEE Trans. Knowl. Data Eng. 2001, 13(1):96-111.
    • (2001) IEEE Trans. Knowl. Data Eng. , vol.13 , Issue.1 , pp. 96-111
    • Korn, F.1    Pagel, B.2    Faloutsos, C.3
  • 8
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17(4):491-502.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 9
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I.n., Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 10
    • 33745891586 scopus 로고    scopus 로고
    • Springer-Verlag New York, Inc., Secaucus, NJ, USA, I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh (Eds.)
    • Feature Extraction, Foundations and Applications 2006, Springer-Verlag New York, Inc., Secaucus, NJ, USA. I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh (Eds.).
    • (2006) Feature Extraction, Foundations and Applications
  • 13
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman J.H., Tukey J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. 1974, 23(9):881-890.
    • (1974) IEEE Trans. Comput. , vol.23 , Issue.9 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 14
    • 84950754164 scopus 로고
    • Exploratory projection pursuit
    • Friedman J.H. Exploratory projection pursuit. Am. Stat. Assoc. 1987, 82(397):249-266.
    • (1987) Am. Stat. Assoc. , vol.82 , Issue.397 , pp. 249-266
    • Friedman, J.H.1
  • 15
    • 84875089651 scopus 로고    scopus 로고
    • Projection pursuit flood disaster classification assessment method based on multi-swarm cooperative particle swarm optimization
    • Huang W., Zhang X. Projection pursuit flood disaster classification assessment method based on multi-swarm cooperative particle swarm optimization. J. Water Resour. Prot. 2011, 3(6):415-420.
    • (2011) J. Water Resour. Prot. , vol.3 , Issue.6 , pp. 415-420
    • Huang, W.1    Zhang, X.2
  • 16
    • 84869404512 scopus 로고    scopus 로고
    • Projection pursuit dynamic cluster model and its application to water resources carrying capacity evaluation
    • Wang S., Zhang X. Projection pursuit dynamic cluster model and its application to water resources carrying capacity evaluation. J. Water Resour. Prot. 2010, 2(5):2474-2482.
    • (2010) J. Water Resour. Prot. , vol.2 , Issue.5 , pp. 2474-2482
    • Wang, S.1    Zhang, X.2
  • 17
    • 48349091940 scopus 로고    scopus 로고
    • A projection pursuit algorithm for anomaly detection in hyperspectral imagery
    • Malpica J.A., Rejas J.G., Alonso M.C. A projection pursuit algorithm for anomaly detection in hyperspectral imagery. Pattern Recognit. 2008, 41:3313-3327.
    • (2008) Pattern Recognit. , vol.41 , pp. 3313-3327
    • Malpica, J.A.1    Rejas, J.G.2    Alonso, M.C.3
  • 19
    • 1542784424 scopus 로고    scopus 로고
    • Cluster identification using projections
    • Pena D., Prieto F. Cluster identification using projections. J. Am. Stat. Assoc. 2001, 96(456):1433-1445.
    • (2001) J. Am. Stat. Assoc. , vol.96 , Issue.456 , pp. 1433-1445
    • Pena, D.1    Prieto, F.2
  • 20
    • 0037349395 scopus 로고    scopus 로고
    • Projection pursuit clustering for exploratory data analysis
    • Bolton R., Krzanowski W. Projection pursuit clustering for exploratory data analysis. J. Comput. Graph. Stat. 2003, 12(1):121-142.
    • (2003) J. Comput. Graph. Stat. , vol.12 , Issue.1 , pp. 121-142
    • Bolton, R.1    Krzanowski, W.2
  • 21
    • 29544443712 scopus 로고    scopus 로고
    • Projection pursuit for exploratory supervised classification
    • Lee E., Cook D., Klinke S., Lumley T. Projection pursuit for exploratory supervised classification. J. Comput. Graph. Stat. 2005, 14(4):831-846.
    • (2005) J. Comput. Graph. Stat. , vol.14 , Issue.4 , pp. 831-846
    • Lee, E.1    Cook, D.2    Klinke, S.3    Lumley, T.4
  • 22
    • 38749110363 scopus 로고    scopus 로고
    • A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia
    • Demirci O., Clark V.P., Calhoun V.D. A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia. Neuroimage 2008, 39(4):1774-1782.
    • (2008) Neuroimage , vol.39 , Issue.4 , pp. 1774-1782
    • Demirci, O.1    Clark, V.P.2    Calhoun, V.D.3
  • 23
    • 77956722556 scopus 로고    scopus 로고
    • Projection-pursuit approach to robust linear discriminant analysis
    • Pires A.M., Branco J.A. Projection-pursuit approach to robust linear discriminant analysis. J. Multivar. Anal. 2010, 101(10):2464-2485.
    • (2010) J. Multivar. Anal. , vol.101 , Issue.10 , pp. 2464-2485
    • Pires, A.M.1    Branco, J.A.2
  • 25
    • 33947579959 scopus 로고    scopus 로고
    • Prediction of ozone tropospheric degradation rate constants by projection pursuit regression
    • Ren Y., Liu H., Yao X., Liu M. Prediction of ozone tropospheric degradation rate constants by projection pursuit regression. Anal. Chim. Acta 2007, 589(1):150-158.
    • (2007) Anal. Chim. Acta , vol.589 , Issue.1 , pp. 150-158
    • Ren, Y.1    Liu, H.2    Yao, X.3    Liu, M.4
  • 26
    • 27744465759 scopus 로고    scopus 로고
    • Projection pursuit mixture density estimation
    • Aladjem M. Projection pursuit mixture density estimation. IEEE Trans. Signal Process. 2005, 53(11):4376-4383.
    • (2005) IEEE Trans. Signal Process. , vol.53 , Issue.11 , pp. 4376-4383
    • Aladjem, M.1
  • 29
    • 0000263797 scopus 로고
    • Projection pursuit
    • Huber P.J. Projection pursuit. Ann. Stat. 1985, 13(2):435-475.
    • (1985) Ann. Stat. , vol.13 , Issue.2 , pp. 435-475
    • Huber, P.J.1
  • 31
    • 4243224126 scopus 로고
    • Three-dimensional projection pursuit
    • Nason G. Three-dimensional projection pursuit. J. R. Stat. Soc. Ser. C 1995, 44:411-430.
    • (1995) J. R. Stat. Soc. Ser. C , vol.44 , pp. 411-430
    • Nason, G.1
  • 32
    • 0034235934 scopus 로고    scopus 로고
    • Sequential projection pursuit using genetic algorithms for data mining of analytical data
    • Guo Q., Wu W., Questier F., Massart D., Boucon C., de Jong S. Sequential projection pursuit using genetic algorithms for data mining of analytical data. Anal. Chem. 2000, 72(13):2846-2855.
    • (2000) Anal. Chem. , vol.72 , Issue.13 , pp. 2846-2855
    • Guo, Q.1    Wu, W.2    Questier, F.3    Massart, D.4    Boucon, C.5    de Jong, S.6
  • 33
    • 84885835333 scopus 로고    scopus 로고
    • Towards an efficient genetic algorithm optimizer for sequential projection pursuit
    • Espezua S., Villanueva E., Maciel C.D. Towards an efficient genetic algorithm optimizer for sequential projection pursuit. Neurocomputing 2014, 123:40-48.
    • (2014) Neurocomputing , vol.123 , pp. 40-48
    • Espezua, S.1    Villanueva, E.2    Maciel, C.D.3
  • 34
    • 19444367750 scopus 로고    scopus 로고
    • An improved optimization algorithm and Bayes factor termination criterion for sequential projection pursuit
    • Webb-Robertson B., Jarman K., Harvey S., Posse C., Wright B. An improved optimization algorithm and Bayes factor termination criterion for sequential projection pursuit. Chemom. Intell. Lab. Syst. 2005, 77(1-2):149-160.
    • (2005) Chemom. Intell. Lab. Syst. , vol.77 , Issue.1-2 , pp. 149-160
    • Webb-Robertson, B.1    Jarman, K.2    Harvey, S.3    Posse, C.4    Wright, B.5
  • 35
    • 79959376610 scopus 로고    scopus 로고
    • Genetic algorithms and particle swarm optimization for exploratory projection pursuit
    • Berro A., Marie-Sainte S.L., Ruiz-Gazen A. Genetic algorithms and particle swarm optimization for exploratory projection pursuit. Ann. Math. Artif. Intell. 2010, 60(1-2, SI):153-178.
    • (2010) Ann. Math. Artif. Intell. , vol.60 , Issue.1-2 SI , pp. 153-178
    • Berro, A.1    Marie-Sainte, S.L.2    Ruiz-Gazen, A.3
  • 36
    • 0002975747 scopus 로고
    • Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new "Index of Condensation"
    • Kruskal J. Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new "Index of Condensation". Stat. Comput. 1969, 427-440.
    • (1969) Stat. Comput. , pp. 427-440
    • Kruskal, J.1
  • 38
    • 0029544228 scopus 로고
    • Projection pursuit exploratory data analysis
    • Posse C. Projection pursuit exploratory data analysis. Comput. Stat. Data Anal. 1995, 20:669-687.
    • (1995) Comput. Stat. Data Anal. , vol.20 , pp. 669-687
    • Posse, C.1
  • 39
    • 0001906155 scopus 로고
    • Tools for two-dimensional exploratory projection pursuit
    • Posse C. Tools for two-dimensional exploratory projection pursuit. J. Comput. Graph. Stat. 1995, 4(2):83-100.
    • (1995) J. Comput. Graph. Stat. , vol.4 , Issue.2 , pp. 83-100
    • Posse, C.1
  • 40
    • 78049231408 scopus 로고    scopus 로고
    • An efficient optimization method for revealing local optima of projection pursuit indices
    • S.L. Marie-Sainte, A. Berro, A. Ruiz-Gazen, An efficient optimization method for revealing local optima of projection pursuit indices, in: ANTS Conference, 2010, pp. 60-71.
    • (2010) ANTS Conference , pp. 60-71
    • Marie-Sainte, S.L.1    Berro, A.2    Ruiz-Gazen, A.3
  • 41
    • 30444452650 scopus 로고    scopus 로고
    • Dimension reduction as a deflation method in ICA
    • Zhang K., Chan L.-W. Dimension reduction as a deflation method in ICA. IEEE Sign. Process. Lett. 2006, 13(1):45-48.
    • (2006) IEEE Sign. Process. Lett. , vol.13 , Issue.1 , pp. 45-48
    • Zhang, K.1    Chan, L.-W.2
  • 42
    • 26644442334 scopus 로고    scopus 로고
    • Projection pursuit indices based on the empirical distribution function
    • Perisic I., Posse C. Projection pursuit indices based on the empirical distribution function. J. Comput. Graph. Stat. 2005, 14(3):700-715.
    • (2005) J. Comput. Graph. Stat. , vol.14 , Issue.3 , pp. 700-715
    • Perisic, I.1    Posse, C.2
  • 43
    • 84952261476 scopus 로고
    • Projection pursuit indexes based on orthonormal function expansions
    • Cook D., Buja A., Cabrera J. Projection pursuit indexes based on orthonormal function expansions. J. Comput. Graph. Stat. 1993, 2(3):225-250.
    • (1993) J. Comput. Graph. Stat. , vol.2 , Issue.3 , pp. 225-250
    • Cook, D.1    Buja, A.2    Cabrera, J.3
  • 44
    • 51849154219 scopus 로고    scopus 로고
    • Projection pursuit constructive neural networks based on quality of projected clusters
    • V. Kurkova, R. Neruda, J. Koutnik (Eds.)
    • M. Grochowski, W. Duch, Projection pursuit constructive neural networks based on quality of projected clusters, in: V. Kurkova, R. Neruda, J. Koutnik (Eds.), Artificial Neural Networks-ICANN 2008, PT II, Lecture Notes In Computer Science, vol. 5164, 2008, pp. 754-762.
    • (2008) Artificial Neural Networks-ICANN 2008, PT II, Lecture Notes In Computer Science , vol.5164 , pp. 754-762
    • Grochowski, M.1    Duch, W.2
  • 45
    • 77953475823 scopus 로고    scopus 로고
    • A projection pursuit index for large p small n data
    • Lee E.-K., Cook D. A projection pursuit index for large p small n data. Stat. Comput. 2010, 20(3):381-392.
    • (2010) Stat. Comput. , vol.20 , Issue.3 , pp. 381-392
    • Lee, E.-K.1    Cook, D.2
  • 47
    • 0000875045 scopus 로고
    • On projection pursuit regression
    • Hall P. On projection pursuit regression. Ann. Stat. 1989, 17(2):573-588.
    • (1989) Ann. Stat. , vol.17 , Issue.2 , pp. 573-588
    • Hall, P.1
  • 49
    • 84862789126 scopus 로고    scopus 로고
    • Fast neighborhood component analysis
    • Yang W., Wang K., Zuo W. Fast neighborhood component analysis. Neurocomputing 2012, 83:31-37.
    • (2012) Neurocomputing , vol.83 , pp. 31-37
    • Yang, W.1    Wang, K.2    Zuo, W.3
  • 53
    • 34047196558 scopus 로고    scopus 로고
    • Equivalence of some common linear feature extraction techniques for appearance-based object recognition tasks
    • Asuncion Vicente M., Hoyer P.O., Hyvarinen A. Equivalence of some common linear feature extraction techniques for appearance-based object recognition tasks. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29(5):896-900.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.5 , pp. 896-900
    • Asuncion Vicente, M.1    Hoyer, P.O.2    Hyvarinen, A.3
  • 54
    • 84864285944 scopus 로고    scopus 로고
    • The small sample size problem of ICA. a comparative study and analysis
    • Deng W., Liu Y., Hu J., Guo J. The small sample size problem of ICA. a comparative study and analysis. Pattern Recognit. 2012, 45(12):4438-4450.
    • (2012) Pattern Recognit. , vol.45 , Issue.12 , pp. 4438-4450
    • Deng, W.1    Liu, Y.2    Hu, J.3    Guo, J.4
  • 55
    • 45249095384 scopus 로고    scopus 로고
    • Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis
    • Biswas S., Storey J., Akey J. Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis. BMC Bioinform. 2008, 9(1):244.
    • (2008) BMC Bioinform. , vol.9 , Issue.1 , pp. 244
    • Biswas, S.1    Storey, J.2    Akey, J.3
  • 57
    • 33746892219 scopus 로고    scopus 로고
    • Noise reduction in magnetocardiography by singular value decomposition and independent component analysis
    • DiPietroPaolo D., Mller H.-P., Nolte G., Ern S.N. Noise reduction in magnetocardiography by singular value decomposition and independent component analysis. Med. Biol. Eng. Comput. 2006, 44(6):489-499.
    • (2006) Med. Biol. Eng. Comput. , vol.44 , Issue.6 , pp. 489-499
    • DiPietroPaolo, D.1    Mller, H.-P.2    Nolte, G.3    Ern, S.N.4
  • 58
    • 33750415996 scopus 로고    scopus 로고
    • Eigengene-based linear discriminant model for tumor classification using gene expression microarray data
    • Shen R., Ghosh D., Chinnaiyan A., Meng Z. Eigengene-based linear discriminant model for tumor classification using gene expression microarray data. Bioinformatics 2006, 22(21):2635-2642.
    • (2006) Bioinformatics , vol.22 , Issue.21 , pp. 2635-2642
    • Shen, R.1    Ghosh, D.2    Chinnaiyan, A.3    Meng, Z.4
  • 59
    • 0037452966 scopus 로고    scopus 로고
    • Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms
    • Alter O., Brown P.O., Botstein D. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc. Natl. Acad. Sci. 2003, 100(6):3351-3356.
    • (2003) Proc. Natl. Acad. Sci. , vol.100 , Issue.6 , pp. 3351-3356
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 61
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter O., Brown P.O., Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. 2000, 97(18):10101-10106.
    • (2000) Proc. Natl. Acad. Sci. , vol.97 , Issue.18 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 63
    • 76349109043 scopus 로고    scopus 로고
    • Dimension reduction of microarray gene expression data. the accelerated failure time model
    • Nguyen T.S., Rojo J. Dimension reduction of microarray gene expression data. the accelerated failure time model. J. Bioinform. Comput. Biol. 2009, 7(6):939-954.
    • (2009) J. Bioinform. Comput. Biol. , vol.7 , Issue.6 , pp. 939-954
    • Nguyen, T.S.1    Rojo, J.2
  • 65
    • 83855162246 scopus 로고    scopus 로고
    • Classifiability-based discriminatory projection pursuit
    • Su Y., Shan S., Chen X., Gao W. Classifiability-based discriminatory projection pursuit. IEEE Trans. Neural Netw. 2011, 22(12):2050-2061.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 2050-2061
    • Su, Y.1    Shan, S.2    Chen, X.3    Gao, W.4
  • 68
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., Gishdagger K., Ybarradagger S., Mackdagger D., Levine A.J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 1999, 96(12):6745-6750.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gishdagger, K.4    Ybarradagger, S.5    Mackdagger, D.6    Levine, A.J.7
  • 74
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S., Fridlyand J., Speed T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 2002, 97(457):77-87.
    • (2002) J. Am. Stat. Assoc. , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 76
    • 85028163245 scopus 로고    scopus 로고
    • version 7.10.0 (R2010a), The MathWorks Inc.
    • MATLAB, version 7.10.0 (R2010a), The MathWorks Inc., 2010.
    • (2010)
  • 77
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 78
    • 53549120920 scopus 로고    scopus 로고
    • Kernel sliced inverse regression with applications to classification
    • Wu H.-M. Kernel sliced inverse regression with applications to classification. J. Comput. Graph. Stat. 2008, 17(3):590-610.
    • (2008) J. Comput. Graph. Stat. , vol.17 , Issue.3 , pp. 590-610
    • Wu, H.-M.1
  • 79
    • 38949156621 scopus 로고    scopus 로고
    • A modified T-test feature selection method and its application on the hapmap genotype data
    • Zhou N., Wang L. A modified T-test feature selection method and its application on the hapmap genotype data. Genomics Proteomics Bioinform. 2007, 5(3-4):242-249.
    • (2007) Genomics Proteomics Bioinform. , vol.5 , Issue.3-4 , pp. 242-249
    • Zhou, N.1    Wang, L.2
  • 80
    • 84992726552 scopus 로고
    • Estimating attributes: analysis and extensions of RELIEF
    • Springer-Verlag New York, Inc., Secaucus, NJ, USA, F. Bergadano, L.D. Raedt (Eds.)
    • Kononenko I. Estimating attributes: analysis and extensions of RELIEF. European Conference on Machine Learning 1994, 171-182. Springer-Verlag New York, Inc., Secaucus, NJ, USA. F. Bergadano, L.D. Raedt (Eds.).
    • (1994) European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 82
    • 0003957032 scopus 로고    scopus 로고
    • Weka: Practical Machine Learning Tools and Techniques with Java Implementations
    • I.H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, S.J. Cunningham, Weka: Practical Machine Learning Tools and Techniques with Java Implementations, 1999. http://www.cs.waikato.ac.nz/ml/weka/.
    • (1999)
    • Witten, I.H.1    Frank, E.2    Trigg, L.3    Hall, M.4    Holmes, G.5    Cunningham, S.J.6
  • 83
    • 0037361994 scopus 로고    scopus 로고
    • Ranking learning algorithms. using IBL and meta-learning on accuracy and time results
    • Brazdil P.B., Soares C., Da Costa J.P. Ranking learning algorithms. using IBL and meta-learning on accuracy and time results. Mach. Learn. 2003, 50(3):251-277.
    • (2003) Mach. Learn. , vol.50 , Issue.3 , pp. 251-277
    • Brazdil, P.B.1    Soares, C.2    Da Costa, J.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.