-
1
-
-
85028171121
-
IDF Diabetes Atlas, 6
-
International Diabetes Federation, Brussels:
-
International Diabetes Federation (2013) IDF Diabetes Atlas, 6. Aufl. International Diabetes Federation, Brussels
-
(2013)
Aufl
-
-
-
2
-
-
84906329015
-
-
PID: 23762204
-
Rathmann W, Scheidt-Nave C, Roden M et al (2013) Type 2 diabetes: prevalence and relevance of genetic and acquired factors for its prediction. Dtsch Arztebl Int 110:331–337
-
(2013)
Dtsch Arztebl Int
, vol.110
, pp. 331
-
-
Rathmann1
-
3
-
-
33847667588
-
-
PID: 17327313
-
Schulze MB, Hoffmann K, Boeing H et al (2007) An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care 30:510–515
-
(2007)
Diabetes Care
, vol.30
, pp. 510
-
-
Schulze1
-
4
-
-
79960505344
-
-
PID: 21622851
-
Buijsse B, Simmons RK, Griffin SJ et al (2011) Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev 33:46–62
-
(2011)
Epidemiol Rev
, vol.33
, pp. 46
-
-
Buijsse1
-
5
-
-
84890907150
-
-
PID: 24078135, COI: 1:CAS:528:DC%2BC3sXhsFKqsb3K
-
Herder C, Kowall B, Tabak AG et al (2014) The potential of novel biomarkers to improve risk prediction of type 2 diabetes. Diabetologia 57:16–29
-
(2014)
Diabetologia
, vol.57
, pp. 16
-
-
Herder1
-
6
-
-
84904745172
-
-
PID: 24859358, COI: 1:CAS:528:DC%2BC2cXptVaks74%3D
-
Grarup N, Sandholt CH, Hansen T et al (2014) Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia 57:1528–1541
-
(2014)
Diabetologia
, vol.57
, pp. 1528
-
-
Grarup1
-
7
-
-
84897098159
-
-
PID: 24535206, COI: 1:CAS:528:DC%2BC2cXivFygtbk%3D
-
Hivert MF, Vassy JL, Meigs JB (2014) Susceptibility to type 2 diabetes mellitus – from genes to prevention. Nat Rev Endocrinol 10:198–205
-
(2014)
Nat Rev Endocrinol
, vol.10
, pp. 198
-
-
Hivert1
-
8
-
-
84906708242
-
Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care
-
Walford GA, Porneala BC, Dauriz M et al (2014) Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care. DOI 10.2337/dc14-0560 1935-5548
-
(2014)
DOI 10.2337/dc14-0560
, pp. 1935-5548
-
-
Walford, G.A.1
Porneala, B.C.2
Dauriz, M.3
-
9
-
-
84901298851
-
-
PID: 24296717, COI: 1:CAS:528:DC%2BC2cXhsV2ls7rM
-
Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171
-
(2014)
Diabetes
, vol.63
, pp. 2158
-
-
Dimas1
-
10
-
-
84868337361
-
-
PID: 22885922, COI: 1:CAS:528:DC%2BC38XhtFOgsLfP
-
Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990
-
(2012)
Nat Genet
, vol.44
, pp. 981
-
-
Morris1
-
11
-
-
84895858002
-
-
PID: 24464100, COI: 1:CAS:528:DC%2BC2cXht12ju7g%3D
-
Steinthorsdottir V, Thorleifsson G, Sulem P et al (2014) Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet 46:294–298
-
(2014)
Nat Genet
, vol.46
, pp. 294
-
-
Steinthorsdottir1
-
12
-
-
84906226932
-
-
PID: 25043022, COI: 1:CAS:528:DC%2BC2cXhtlGntLfJ
-
Moltke I, Grarup N, Jorgensen ME et al (2014) A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512:190–193
-
(2014)
Nature
, vol.512
, pp. 190
-
-
Moltke1
-
13
-
-
84890260477
-
-
PID: 24290377, COI: 1:CAS:528:DC%2BC3sXhvVKisrzK
-
Lohmueller KE, Sparso T, Li Q et al (2013) Whole-exome sequencing of 2,000 Danish individuals and the role of rare coding variants in type 2 diabetes. Am J Hum Genet 93:1072–1086
-
(2013)
Am J Hum Genet
, vol.93
, pp. 1072
-
-
Lohmueller1
-
14
-
-
84895868553
-
-
PID: 24509480, COI: 1:CAS:528:DC%2BC2cXitFanuro%3D
-
Mahajan A, Go MJ, Zhang W et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46:234–239
-
(2014)
Nat Genet
, vol.46
, pp. 234
-
-
Mahajan1
-
15
-
-
84901380958
-
-
PID: 24520119, COI: 1:CAS:528:DC%2BC2cXhsV2ls7rN
-
Vassy JL, Hivert MF, Porneala B et al (2014) Polygenic type 2 diabetes prediction at the limit of common variant detection. Diabetes 63:2172–2182
-
(2014)
Diabetes
, vol.63
, pp. 2172
-
-
Vassy1
-
17
-
-
84901387060
-
-
PID: 24845081
-
Langenberg C, Sharp SJ, Franks PW et al (2014) Gene-lifestyle interaction and type 2 diabetes: the EPIC InterAct case-cohort study. PLoS Med 11:e1001647
-
(2014)
PLoS Med
, vol.11
-
-
Langenberg1
-
18
-
-
84862134307
-
-
Aschard H, Chen J, Cornelis MC et al (2012) Inclusion of gene-gene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases. Am J Hum Genet 90:1–11
-
(2012)
Am J Hum Genet
, vol.90
, pp. 1
-
-
Aschard1
-
19
-
-
70350560562
-
-
PID: 19875619, COI: 1:CAS:528:DC%2BD1MXhsVChtrbF
-
Bain JR, Stevens RD, Wenner BR et al (2009) Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes 58:2429–2443
-
(2009)
Diabetes
, vol.58
, pp. 2429
-
-
Bain1
-
20
-
-
0036007687
-
-
PID: 11860207, COI: 1:CAS:528:DC%2BD38Xht1Kqtr0%3D
-
Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171
-
(2002)
Plant Mol Biol
, vol.48
, pp. 155
-
-
Fiehn1
-
21
-
-
0036463681
-
-
PID: 12120097, COI: 1:CAS:528:DC%2BD38Xhs1aksbw%3D
-
Nicholson JK, Connelly J, Lindon JC et al (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161
-
(2002)
Nat Rev Drug Discov
, vol.1
, pp. 153
-
-
Nicholson1
-
22
-
-
75749134031
-
-
PID: 20037589, COI: 1:CAS:528:DC%2BD1MXhs1Skur7M
-
Illig T, Gieger C, Zhai G et al (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42:137–141
-
(2010)
Nat Genet
, vol.42
, pp. 137
-
-
Illig1
-
23
-
-
80052398214
-
-
PID: 21886157, COI: 1:CAS:528:DC%2BC3MXhtFWku7nN
-
Suhre K, Shin SY, Petersen AK et al (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477:54–60
-
(2011)
Nature
, vol.477
, pp. 54
-
-
Suhre1
-
24
-
-
40349083852
-
-
PID: 18230739, COI: 1:CAS:528:DC%2BD1cXhvFCitrw%3D
-
Assfalg M, Bertini I, Colangiuli D et al (2008) Evidence of different metabolic phenotypes in humans. Proc Natl Acad Sci U S A 105:1420–1424
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 1420
-
-
Assfalg1
-
25
-
-
79951892537
-
-
PID: 21359215, COI: 1:CAS:528:DC%2BC3MXislChurs%3D
-
Psychogios N, Hau DD, Peng J et al (2011) The human serum metabolome. PLoS One 6:e16957
-
(2011)
PLoS One
, vol.6
, pp. e16957
-
-
Psychogios1
-
26
-
-
59449097019
-
-
PID: 19147747, COI: 1:CAS:528:DC%2BD1MXlvFeksw%3D%3D
-
Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15:431–440
-
(2009)
Clin Cancer Res
, vol.15
, pp. 431
-
-
Spratlin1
-
27
-
-
78649735772
-
-
PID: 21085649
-
Suhre K, Meisinger C, Döring et al (2010) Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One 5:e13953
-
(2010)
PLoS One
, vol.5
, pp. e13953
-
-
Suhre1
-
28
-
-
79953737332
-
-
PID: 21423183
-
Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453
-
(2011)
Nat Med
, vol.17
, pp. 448
-
-
Wang1
-
29
-
-
84874412069
-
-
PID: 23129134
-
Würtz P, Soininen P, Kangas AJ et al (2013) Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36:648–655
-
(2013)
Diabetes Care
, vol.36
, pp. 648
-
-
Würtz1
-
30
-
-
84867012919
-
-
PID: 23010998
-
Wang-Sattler R, Yu Z, Herder C et al (2012) Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 8:615
-
(2012)
Mol Syst Biol
, vol.8
, pp. 615
-
-
Wang-Sattler1
-
31
-
-
84873042769
-
-
PID: 23043162, COI: 1:CAS:528:DC%2BC3sXhvFOnsLg%3D
-
Floegel A, Stefan N, Yu Z et al (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62:639–648
-
(2013)
Diabetes
, vol.62
, pp. 639
-
-
Floegel1
|