메뉴 건너뛰기




Volumn 107, Issue 9, 2017, Pages 1406-1412

State & local chronic disease surveillance using electronic health record systems

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; BEHAVIORAL RISK FACTOR SURVEILLANCE SYSTEM; CHRONIC DISEASE; ELECTRONIC HEALTH RECORD; HEALTH BEHAVIOR; HUMAN; MASSACHUSETTS; MIDDLE AGED; PREVALENCE; STATISTICS AND NUMERICAL DATA;

EID: 85027884075     PISSN: 00900036     EISSN: 15410048     Source Type: Journal    
DOI: 10.2105/AJPH.2017.303874     Document Type: Article
Times cited : (88)

References (31)
  • 1
    • 85007566303 scopus 로고    scopus 로고
    • Understanding county-level, cause-specificmortality: The great value-And limitations- of small area data
    • Clark CR, Williams DR. Understanding county-level, cause-specificmortality: The great value-And limitations- of small area data. JAMA. 2016;316(22):2363-2365.
    • (2016) JAMA , vol.316 , Issue.22 , pp. 2363-2365
    • Clark, C.R.1    Williams, D.R.2
  • 2
    • 84922376468 scopus 로고    scopus 로고
    • CDC National Health Report: Leading causes of morbidity and mortality and associated behavioral risk and protective factors-United States, 2005-2013
    • Centers for Disease Control and Prevention
    • Johnson NB, Hayes LD, Brown K, Hoo EC, Ethier KA, Centers for Disease Control and Prevention. CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors-United States, 2005-2013.MMWR Suppl. 2014; 63(4):3-27.
    • (2014) MMWR , vol.63 , Issue.4 , pp. 3-27
    • Johnson, N.B.1    Hayes, L.D.2    Brown, K.3    Hoo, E.C.4    Ethier, K.A.5
  • 3
    • 84978884264 scopus 로고    scopus 로고
    • Surveillance for certain health behaviors, chronic diseases, and conditions, access to health care, and use of preventive health services among states and selected local areas- Behavioral Risk Factor Surveillance System, United States, 2012
    • Chowdhury PP, Mawokomatanda T, Xu F, et al. Surveillance for certain health behaviors, chronic diseases, and conditions, access to health care, and use of preventive health services among states and selected local areas- Behavioral Risk Factor Surveillance System, United States, 2012. MMWR Surveill Summ. 2016;65(4):1-142.
    • (2016) MMWR Surveill Summ , vol.65 , Issue.4 , pp. 1-142
    • Chowdhury, P.P.1    Mawokomatanda, T.2    Xu, F.3
  • 4
    • 85021130251 scopus 로고    scopus 로고
    • Trends in cardiovascular health metrics in obese adults: National Health and Nutrition Examination Survey (NHANES), 1988-2014
    • Guo F, Garvey WT. Trends in cardiovascular health metrics in obese adults: National Health and Nutrition Examination Survey (NHANES), 1988-2014. J AmHeart Assoc. 2016;5(7):e003619.
    • (2016) J AmHeart Assoc , vol.5 , Issue.7 , pp. e003619
    • Guo, F.1    Garvey, W.T.2
  • 5
    • 67650658966 scopus 로고    scopus 로고
    • The behavioral risk factors surveillance system: Past, present, and future
    • Mokdad AH. The Behavioral Risk Factors Surveillance System: past, present, and future. Annu Rev Public Health. 2009;30:43-54.
    • (2009) Annu Rev Public Health , vol.30 , pp. 43-54
    • Mokdad, A.H.1
  • 6
    • 84856118023 scopus 로고    scopus 로고
    • Institute of Medicine. Existing surveillance data sources and systems.Washington, DC: National Academies Press
    • Institute of Medicine. Existing surveillance data sources and systems. In: A Nationwide Framework for Surveillance of Cardiovascular and Chronic Lung Diseases.Washington, DC: National Academies Press; 2011:65-90.
    • (2011) A Nationwide Framework for Surveillance of Cardiovascular and Chronic Lung Diseases , pp. 65-90
  • 7
    • 84875205119 scopus 로고    scopus 로고
    • A systematic review of publications assessing reliability and validity of the Behavioral Risk Factor Surveillance System (BRFSS), 2004- 2011
    • Pierannunzi C, Hu SS, Balluz L. A systematic review of publications assessing reliability and validity of the Behavioral Risk Factor Surveillance System (BRFSS), 2004- 2011. BMC Med Res Methodol. 2013;13:49.
    • (2013) BMC Med Res Methodol , vol.13 , pp. 49
    • Pierannunzi, C.1    Hu, S.S.2    Balluz, L.3
  • 8
    • 84941702063 scopus 로고    scopus 로고
    • Prevalence of and trends in diabetes among adults in the United States, 1988-2012
    • Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988-2012. JAMA. 2015;314(10):1021-1029.
    • (2015) JAMA , vol.314 , Issue.10 , pp. 1021-1029
    • Menke, A.1    Casagrande, S.2    Geiss, L.3    Cowie, C.C.4
  • 9
    • 84973376090 scopus 로고    scopus 로고
    • Trends in obesity among adults in the United States, 2005 to 2014
    • Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284-2291.
    • (2016) JAMA , vol.315 , Issue.21 , pp. 2284-2291
    • Flegal, K.M.1    Kruszon-Moran, D.2    Carroll, M.D.3    Fryar, C.D.4    Ogden, C.L.5
  • 10
    • 84862556866 scopus 로고    scopus 로고
    • Integrating clinical practice and public health surveillance using electronic medical record systems
    • Klompas M, McVetta J, Lazarus R, et al. Integrating clinical practice and public health surveillance using electronic medical record systems. Am J Public Health. 2012;102(suppl 3):S325-S332.
    • (2012) Am J Public Health , vol.102 , pp. S325-S332
    • Klompas, M.1    McVetta, J.2    Lazarus, R.3
  • 11
    • 84911059334 scopus 로고    scopus 로고
    • MDPHnet: Secure, distributed sharing of electronic health record data for public health surveillance, evaluation, and planning
    • Vogel J, Brown JS, Land T, Platt R, Klompas M. MDPHnet: secure, distributed sharing of electronic health record data for public health surveillance, evaluation, and planning. Am J Public Health. 2014;104(12):2265-2270.
    • (2014) Am J Public Health , vol.104 , Issue.12 , pp. 2265-2270
    • Vogel, J.1    Brown, J.S.2    Land, T.3    Platt, R.4    Klompas, M.5
  • 12
    • 84905967661 scopus 로고    scopus 로고
    • Four health data networks illustrate the potential for a shared national multipurpose big-data network
    • Curtis LH, Brown J, Platt R. Four health data networks illustrate the potential for a shared national multipurpose big-data network. Health Aff (Millwood). 2014; 33(7):1178-1186.
    • (2014) Health Aff (Millwood) , vol.33 , Issue.7 , pp. 1178-1186
    • Curtis, L.H.1    Brown, J.2    Platt, R.3
  • 13
    • 84893205909 scopus 로고    scopus 로고
    • Innovative uses of electronic health records and social media for public health surveillance
    • Eggleston EM, Weitzman ER. Innovative uses of electronic health records and social media for public health surveillance. Curr Diab Rep. 2014;14(3):468.
    • (2014) Curr Diab Rep , vol.14 , Issue.3 , pp. 468
    • Eggleston, E.M.1    Weitzman, E.R.2
  • 14
    • 84925245442 scopus 로고    scopus 로고
    • Uses of electronic health records for public health surveillance to advance public health
    • Birkhead GS, Klompas M, Shah NR.Uses of electronic health records for public health surveillance to advance public health. Annu Rev Public Health. 2015;36:345-359.
    • (2015) Annu Rev Public Health , vol.36 , pp. 345-359
    • Birkhead, G.S.1    Klompas, M.2    Shah, N.R.3
  • 15
    • 85020484693 scopus 로고    scopus 로고
    • Design of the New York City Macroscope: Innovations in population health surveillance using electronic health records
    • Wash DC
    • Newton-Dame R, McVeigh KH, Schreibstein L, et al. Design of the New York City Macroscope: innovations in population health surveillance using electronic health records. EGEMS (Wash DC). 2016;4(1):1265.
    • (2016) EGEMS , vol.4 , Issue.1 , pp. 1265
    • Newton-Dame, R.1    McVeigh, K.H.2    Schreibstein, L.3
  • 16
    • 85020406446 scopus 로고    scopus 로고
    • Can electronic health records be used for population health surveillance? Validating population health metrics against established survey data
    • Wash DC
    • McVeigh KH, Newton-Dame R, Chan PY, et al. Can electronic health records be used for population health surveillance? Validating population health metrics against established survey data.EGEMS(Wash DC). 2016;4(1):1267.
    • (2016) EGEMS , vol.4 , Issue.1 , pp. 1267
    • McVeigh, K.H.1    Newton-Dame, R.2    Chan, P.Y.3
  • 17
    • 84977501457 scopus 로고    scopus 로고
    • Characterizing adults receiving primary medical care in New York City: Implications for using electronic health records for chronic disease surveillance
    • Romo ML, Chan PY, Lurie-Moroni E, et al. Characterizing adults receiving primary medical care in New York City: implications for using electronic health records for chronic disease surveillance. Prev Chronic Dis. 2016;13:E56.
    • (2016) Prev Chronic Dis , vol.13 , pp. E56
    • Romo, M.L.1    Chan, P.Y.2    Lurie-Moroni, E.3
  • 18
    • 57149127529 scopus 로고    scopus 로고
    • Electronic support for public health: Validated case finding and reporting for notifiable diseases using electronic medical, data
    • Lazarus R, Klompas M, Campion FX, et al. Electronic support for public health: validated case finding and reporting for notifiable diseases using electronic medical data. J Am Med Inform Assoc. 2009;16(1):18-24.
    • (2009) J Am Med Inform Assoc. , vol.16 , Issue.1 , pp. 18-24
    • Lazarus, R.1    Klompas, M.2    Campion, F.X.3
  • 19
    • 77953647113 scopus 로고    scopus 로고
    • Distributed health data networks: A practical and preferred approach to multi-institutional evaluations of comparative effectiveness, safety, and quality of care
    • Brown JS, Holmes JH, Shah K, Hall K, Lazarus R, Platt R. Distributed health data networks: A practical and preferred approach to multi-institutional evaluations of comparative effectiveness, safety, and quality of care. Med Care. 2010;48(6 suppl):S45-S51.
    • (2010) Med Care , vol.48 , Issue.6 , pp. S45-S51
    • Brown, J.S.1    Holmes, J.H.2    Shah, K.3    Hall, K.4    Lazarus, R.5    Platt, R.6
  • 20
    • 84902366316 scopus 로고    scopus 로고
    • Query Health: Standards-based, cross-platform population health surveillance
    • Klann JG, Buck MD, Brown J, et al. Query Health: standards-based, cross-platform population health surveillance. J Am Med Inform Assoc. 2014; 21(4):650-656.
    • (2014) J Am Med Inform Assoc , vol.21 , Issue.4 , pp. 650-656
    • Klann, J.G.1    Buck, M.D.2    Brown, J.3
  • 21
    • 84875474595 scopus 로고    scopus 로고
    • Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data
    • Klompas M, Eggleston E, McVetta J, Lazarus R, Li L, Platt R. Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data. Diabetes Care. 2013;36(4):914-921.
    • (2013) Diabetes Care , vol.36 , Issue.4 , pp. 914-921
    • Klompas, M.1    Eggleston, E.2    McVetta, J.3    Lazarus, R.4    Li, L.5    Platt, R.6
  • 22
    • 85027877551 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention. Available at:, Accessed January 16, 2017
    • Centers for Disease Control and Prevention. 500 Cities: local data for better health. 2017. Available at: https://www.cdc.gov/500cities/index.htm. Accessed January 16, 2017.
    • (2017) 500 Cities: Local Data for Better Health
  • 23
    • 84897441225 scopus 로고    scopus 로고
    • Multilevel regression and poststratification for small-Area estimation of population health outcomes: A case study of chronic obstructive pulmonary disease prevalence using the behavioral risk factor surveillance system
    • Zhang X, Holt JB, Lu H, et al. Multilevel regression and poststratification for small-Area estimation of population health outcomes: A case study of chronic obstructive pulmonary disease prevalence using the behavioral risk factor surveillance system. Am J Epidemiol. 2014;179(8):1025-1033.
    • (2014) Am J Epidemiol , vol.179 , Issue.8 , pp. 1025-1033
    • Zhang, X.1    Holt, J.B.2    Lu, H.3
  • 24
    • 84936757960 scopus 로고    scopus 로고
    • Validation of multilevel regression and poststratification methodology for small area estimation of health indicators from the behavioral risk factor surveillance system
    • Zhang X, Holt JB, Yun S, Lu H, Greenlund KJ, Croft JB. Validation of multilevel regression and poststratification methodology for small area estimation of health indicators from the behavioral risk factor surveillance system. Am J Epidemiol. 2015;182(2):127-137.
    • (2015) Am J Epidemiol , vol.182 , Issue.2 , pp. 127-137
    • Zhang, X.1    Holt, J.B.2    Yun, S.3    Lu, H.4    Greenlund, K.J.5    Croft, J.B.6
  • 25
    • 34250682264 scopus 로고    scopus 로고
    • A comparison of direct vs. Self-report measures for assessing height, weight and body mass index: A systematic review
    • Connor Gorber S, Tremblay M, Moher D, Gorber B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: A systematic review. Obes Rev. 2007;8(4):307-326.
    • (2007) Obes Rev , vol.8 , Issue.4 , pp. 307-326
    • Connor, G.S.1    Tremblay, M.2    Moher, D.3    Gorber, B.4
  • 26
    • 34447557747 scopus 로고    scopus 로고
    • Remission of asthma: A prospective longitudinal study from northern Europe (RHINE study)
    • Holm M, Omenaas E, Gislason T, et al. Remission of asthma: A prospective longitudinal study from northern Europe (RHINE study). Eur Respir J. 2007;30(1):62-65.
    • (2007) Eur Respir J , vol.30 , Issue.1 , pp. 62-65
    • Holm, M.1    Omenaas, E.2    Gislason, T.3
  • 27
    • 85009790820 scopus 로고    scopus 로고
    • Reevaluation of diagnosis in adults with physiciandiagnosed asthma
    • Aaron SD, Vandemheen KL, FitzGerald JM, et al. Reevaluation of diagnosis in adults with physiciandiagnosed asthma. JAMA. 2017;317(3):269-279.
    • (2017) JAMA , vol.317 , Issue.3 , pp. 269-279
    • Aaron, S.D.1    Vandemheen, K.L.2    FitzGerald, J.M.3
  • 28
    • 84884795784 scopus 로고    scopus 로고
    • Use of practice-based research network data to measure neighborhood smoking prevalence
    • Linder JA, Rigotti NA, Brawarsky P, et al. Use of practice-based research network data to measure neighborhood smoking prevalence. Prev Chronic Dis. 2013;10: E84.
    • (2013) Prev Chronic Dis , vol.10 , pp. E84
    • Linder, J.A.1    Rigotti, N.A.2    Brawarsky, P.3
  • 29
    • 84923207050 scopus 로고    scopus 로고
    • Populationlevel obesity surveillance: Monitoring childhood body mass index z-score in a safety-net system
    • Davidson AJ, McCormick EV, Dickinson LM, Haemer MA, Knierim SD, Hambidge SJ. Populationlevel obesity surveillance: monitoring childhood body mass index z-score in a safety-net system. Acad Pediatr. 2014;14(6):632-638.
    • (2014) Acad Pediatr , vol.14 , Issue.6 , pp. 632-638
    • Davidson, A.J.1    McCormick, E.V.2    Dickinson, L.M.3    Haemer, M.A.4    Knierim, S.D.5    Hambidge, S.J.6
  • 30
    • 84891869453 scopus 로고    scopus 로고
    • Estimating the population prevalence of diagnosed and undiagnosed diabetes
    • Leong A, Dasgupta K, Chiasson JL, Rahme E. Estimating the population prevalence of diagnosed and undiagnosed diabetes. Diabetes Care. 2013;36(10): 3002-3008.
    • (2013) Diabetes Care , vol.36 , Issue.10 , pp. 3002-3008
    • Leong, A.1    Dasgupta, K.2    Chiasson, J.L.3    Rahme, E.4
  • 31
    • 84981543199 scopus 로고    scopus 로고
    • Identification of undiagnosed diabetes and quality of diabetes care in the United States: Cross-sectional study of 11.5 million primary care electronic records
    • Holt TA, Gunnarsson CL, Cload PA, Ross SD. Identification of undiagnosed diabetes and quality of diabetes care in the United States: cross-sectional study of 11.5 million primary care electronic records. CMAJ Open. 2014;2(4):E248-E255.
    • (2014) CMAJ Open , vol.2 , Issue.4 , pp. E248-E255
    • Holt, T.A.1    Gunnarsson, C.L.2    Cload, P.A.3    Ross, S.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.