메뉴 건너뛰기




Volumn , Issue , 2014, Pages 191-222

Graphical models for protein function and structure prediction

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85026837439     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781118617151.ch09     Document Type: Chapter
Times cited : (5)

References (89)
  • 1
    • 0014757386 scopus 로고
    • A general method applicable to the search for similarities in the amino acid sequence of two proteins
    • S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443-453, 1970.
    • (1970) J. Mol. Biol , vol.48 , pp. 443-453
    • Needleman, S.B.1    Wunsch, C.D.2
  • 2
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147:195-197, 1981.
    • (1981) J. Mol. Biol , vol.147 , pp. 195-197
    • Smith, T.F.1    Waterman, M.S.2
  • 5
    • 0023989064 scopus 로고
    • Improved tools for biological sequence comparison
    • W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA, 85:2444-2448, 1988.
    • (1988) Proc. Natl. Acad. Sci. USA , vol.85 , pp. 2444-2448
    • Pearson, W.R.1    Lipman, D.J.2
  • 6
    • 0019082587 scopus 로고
    • Fast algorithm for predicting the secondary structure of singlestranded RNA
    • R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary structure of singlestranded RNA. Proc. Natl. Acad. Sci USA, 77:6309-6313, 1980.
    • (1980) Proc. Natl. Acad. Sci USA , vol.77 , pp. 6309-6313
    • Nussinov, R.1    Jacobson, A.B.2
  • 7
    • 0029948001 scopus 로고    scopus 로고
    • SSAP: Sequential structure alignment program for protein structure comparison
    • C. A. Orengo and W. R. Taylor. SSAP: Sequential structure alignment program for protein structure comparison. Methods Enzymol., 266:617-635, 1996.
    • (1996) Methods Enzymol , vol.266 , pp. 617-635
    • Orengo, C.A.1    Taylor, W.R.2
  • 8
    • 0031715982 scopus 로고    scopus 로고
    • Protein structure alignment by incremental combinatorial extension (CE) of the optimal path
    • I. N. Shindyalov and P. E. Bourne. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng., 11:739-747, 1998.
    • (1998) Protein Eng , vol.11 , pp. 739-747
    • Shindyalov, I.N.1    Bourne, P.E.2
  • 9
    • 78649797219 scopus 로고    scopus 로고
    • Effect of using suboptimal alignments in template-based protein structure prediction
    • H. Chen and D. Kihara. Effect of using suboptimal alignments in template-based protein structure prediction. Proteins, 79:315-334, 2011.
    • (2011) Proteins , vol.79 , pp. 315-334
    • Chen, H.1    Kihara, D.2
  • 10
    • 0035866002 scopus 로고    scopus 로고
    • Defrosting the frozen approximation: PROSPECTOR—A new approach to threading
    • J. Skolnick and D. Kihara. Defrosting the frozen approximation: PROSPECTOR—A new approach to threading. Proteins, 42:319-331, 2001.
    • (2001) Proteins , vol.42 , pp. 319-331
    • Skolnick, J.1    Kihara, D.2
  • 11
    • 0028579433 scopus 로고
    • Protein structural similarities predicted by a sequence-structure compatibility method
    • Y. Matsuo and K. Nishikawa. Protein structural similarities predicted by a sequence-structure compatibility method. Protein Sci., 3:2055-2063, 1994.
    • (1994) Protein Sci , vol.3 , pp. 2055-2063
    • Matsuo, Y.1    Nishikawa, K.2
  • 13
    • 0027174134 scopus 로고
    • Prediction of protein secondary structure by the hidden Markov model
    • K. Asai, S. Hayamizu, and K. Handa. Prediction of protein secondary structure by the hidden Markov model. Comput. Appl. Biosci., 9:141-146, 1993.
    • (1993) Comput. Appl. Biosci , vol.9 , pp. 141-146
    • Asai, K.1    Hayamizu, S.2    Handa, K.3
  • 14
    • 0031788749 scopus 로고    scopus 로고
    • III. PASSML: Combining evolutionary inference and protein secondary structure prediction
    • P. Lio, N. Goldman, J. L. Thorne, and D. T. Jones III. PASSML: Combining evolutionary inference and protein secondary structure prediction. Bioinformatics, 14:726-733, 1998.
    • (1998) Bioinformatics , vol.14 , pp. 726-733
    • Lio, P.1    Goldman, N.2    Thorne, J.L.3    Jones, D.T.4
  • 15
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
    • A. Krogh, B. Larsson, G. von Heijne, and E. L. Sonnhammer. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305: 567-80, 2001.
    • (2001) J. Mol. Biol , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    Von Heijne, G.3    Sonnhammer, E.L.4
  • 16
    • 0031614678 scopus 로고    scopus 로고
    • A hidden Markov model for predicting transmembrane helices in protein sequences
    • E. L. Sonnhammer, H. G. von, and A. Krogh. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol., 6:175-182, 1998.
    • (1998) Proc. Int. Conf. Intell. Syst. Mol. Biol , vol.6 , pp. 175-182
    • Sonnhammer, E.L.1    Von, H.G.2    Krogh, A.3
  • 17
    • 0038278386 scopus 로고    scopus 로고
    • Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry
    • R. Karchin, M. Cline, Y. Mandel-Gutfreund, and K. Karplus. Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry. Proteins, 51: 504-14, 2003.
    • (2003) Proteins , vol.51 , pp. 504-514
    • Karchin, R.1    Cline, M.2    Mandel-Gutfreund, Y.3    Karplus, K.4
  • 18
    • 74249104499 scopus 로고    scopus 로고
    • Fast and accurate automatic structure prediction with HHpred
    • A. Hildebrand, M. Remmert, A. Biegert, and J. Soding. Fast and accurate automatic structure prediction with HHpred. Proteins, 77 (Suppl 9):128-132, 2009.
    • (2009) Proteins , vol.77 , pp. 128-132
    • Hildebrand, A.1    Remmert, M.2    Biegert, A.3    Soding, J.4
  • 20
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • D. T. Jones. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol., 292:195-202, 1999.
    • (1999) J. Mol. Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 21
    • 0030038634 scopus 로고    scopus 로고
    • Topology prediction for helical transmembrane proteins at 86% accuracy
    • B. Rost, P. Fariselli, and R. Casadio. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci., 5:1704-1718, 1996.
    • (1996) Protein Sci , vol.5 , pp. 1704-1718
    • Rost, B.1    Fariselli, P.2    Casadio, R.3
  • 22
    • 0036122073 scopus 로고    scopus 로고
    • Prediction of protein-protein interaction sites in heterocomplexes with neural networks
    • P. Fariselli, F. Pazos, A. Valencia, and R. Casadio. Prediction of protein-protein interaction sites in heterocomplexes with neural networks. Eur. J Biochem., 269:1356-1361, 2002.
    • (2002) Eur. J Biochem , vol.269 , pp. 1356-1361
    • Fariselli, P.1    Pazos, F.2    Valencia, A.3    Casadio, R.4
  • 23
    • 34250877416 scopus 로고    scopus 로고
    • Protein docking using surface matching and supervised machine learning
    • A. J. Bordner and A. A. Gorin. Protein docking using surface matching and supervised machine learning. Proteins, 68:488-502, 2007.
    • (2007) Proteins , vol.68 , pp. 488-502
    • Bordner, A.J.1    Gorin, A.A.2
  • 24
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual-layer SVM and profiles
    • J. Guo, H. Chen, Z. Sun, and Y. Lin. A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Proteins 54:738-743, 2004.
    • (2004) Proteins , vol.54 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.3    Lin, Y.4
  • 25
    • 34548567232 scopus 로고    scopus 로고
    • POODLE-L: A two-level SVM prediction system for reliably predicting long disordered regions
    • S. Hirose, K. Shimizu, S. Kanai, Y. Kuroda, and T. Noguchi. POODLE-L: A two-level SVM prediction system for reliably predicting long disordered regions. Bioinformatics, 23:2046-2053, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 2046-2053
    • Hirose, S.1    Shimizu, K.2    Kanai, S.3    Kuroda, Y.4    Noguchi, T.5
  • 28
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larranaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 23:2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 30
    • 79957972049 scopus 로고    scopus 로고
    • Decision tree and ensemble learning algorithms with their applications in bioinformatics
    • D. Che, Q. Liu, K. Rasheed, and X. Tao. Decision tree and ensemble learning algorithms with their applications in bioinformatics. Adv. Exp. Med. Biol., 696:191-199, 2011.
    • (2011) Adv. Exp. Med. Biol , vol.696 , pp. 191-199
    • Che, D.1    Liu, Q.2    Rasheed, K.3    Tao, X.4
  • 35
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. Generative classifiers: A comparison of logistic regression and Naive Bayes
    • A. L. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and Naive Bayes. Adv. Neural Inform. Process. Syst. (NIPS), 14, 2002.
    • (2002) Adv. Neural Inform. Process. Syst. (NIPS) , pp. 14
    • Ng, A.L.1    Jordan, M.I.2
  • 36
    • 83255167044 scopus 로고    scopus 로고
    • An Introduction to conditional random fields
    • C. Sutton and A. McCallum. An Introduction to conditional random fields. Found. Trends Mach. Learn., 4:267-373, 2011.
    • (2011) Found. Trends Mach. Learn , vol.4 , pp. 267-373
    • Sutton, C.1    McCallum, A.2
  • 37
    • 0024610919 scopus 로고
    • Atutorial on hidden Markov models and selected applications in speech recognition
    • L. R. Rabiner. Atutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77:257-286, 1989.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 38
    • 0000747663 scopus 로고    scopus 로고
    • Maximum entropy Markov models for information extraction and segmentation
    • San Francisco, CA
    • A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction and segmentation. International Conference on Machine Learning, San Francisco, CA, 2000, pp 591-598.
    • (2000) International Conference on Machine Learning , pp. 591-598
    • McCallum, A.1    Freitag, D.2    Pereira, F.3
  • 41
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • Nice, France
    • S. Kumar and M. Hebert. Discriminative random fields: A discriminative framework for contextual interaction in classification. Paper presented at the IEEE International Conference on Computer Vision, Nice, France, 2003, pp 1150-1157.
    • (2003) Paper Presented at the IEEE International Conference on Computer Vision , pp. 1150-1157
    • Kumar, S.1    Hebert, M.2
  • 48
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711-732, 1995.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 52
    • 33645964629 scopus 로고    scopus 로고
    • Protein fold recognition using segmentation conditional random fields (SCRFs)
    • Y. Liu, J. Carbonell, P. Weigele, and V. Gopalakrishnan. Protein fold recognition using segmentation conditional random fields (SCRFs). J. Comput. Biol., Barbados, 13:394-406, 2006.
    • (2006) J. Comput. Biol., Barbados , vol.13 , pp. 394-406
    • Liu, Y.1    Carbonell, J.2    Weigele, P.3    Gopalakrishnan, V.4
  • 54
    • 77649264846 scopus 로고    scopus 로고
    • A graphical model relating features, objects and scenes
    • A. Torralba, W. T. MurFreeman, and K. P. Murphy. Using the forest to see the trees: A graphical model relating features, objects and scenes. Commun. ACM, 53:107-114, 2010.
    • (2010) Commun. ACM , vol.53 , pp. 107-114
    • Torralba, A.1    Murfreeman, W.T.2    Murphy, K.P.3
  • 61
    • 0036796369 scopus 로고    scopus 로고
    • SURVEY AND SUMMARY: Current methods of gene prediction, their strengths and weaknesses
    • C. Mathe, M.-F. Sagot, T. Schiex, and P. Rouzé. SURVEY AND SUMMARY: Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res. 2002, 30:4103-4117.
    • (2002) Nucleic Acids Res , vol.30 , pp. 4103-4117
    • Mathe, C.1    Sagot, M.-F.2    Schiex, T.3    Rouzé, P.4
  • 63
    • 34047200354 scopus 로고    scopus 로고
    • Global discriminative learning for higher-accuracy computational gene prediction
    • A. Bernal, K. Crammer, A. Hatzigeorgiou, and F. Pereira. Global discriminative learning for higher-accuracy computational gene prediction. PLoS Comput. Biol., 3:e54, 2007.
    • (2007) Plos Comput. Biol , vol.3
    • Bernal, A.1    Crammer, K.2    Hatzigeorgiou, A.3    Pereira, F.4
  • 65
    • 40449115745 scopus 로고    scopus 로고
    • CONTRAST:Adiscriminative, phylogeny-free approach to multiple informant de novo gene prediction
    • S. S. Gross, C. B. Do, M. Sirota, and S. Batzoglou. CONTRAST:Adiscriminative, phylogeny-free approach to multiple informant de novo gene prediction. Genome Biol., 8:R269, 2007.
    • (2007) Genome Biol , vol.8
    • Gross, S.S.1    Do, C.B.2    Sirota, M.3    Batzoglou, S.4
  • 66
    • 33747086886 scopus 로고    scopus 로고
    • Using ESTs to improve the accuracy of de novo gene prediction
    • C. Wei and M. R. Brent. Using ESTs to improve the accuracy of de novo gene prediction. BMC Bioinformatics, 7:327, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 327
    • Wei, C.1    Brent, M.R.2
  • 68
    • 19844374535 scopus 로고    scopus 로고
    • Begin at the beginning: Predicting genes with 5UTRs
    • R. H. Brown, S. S. Gross, and M. R. Brent. Begin at the beginning: Predicting genes with 5 UTRs. Genome Res., 15:742-747, 2005.
    • (2005) Genome Res , vol.15 , pp. 742-747
    • Brown, R.H.1    Gross, S.S.2    Brent, M.R.3
  • 69
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. IEEE Int. Conf. Neural Networks, 1:586-591, 1993.
    • (1993) IEEE Int. Conf. Neural Networks , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 70
    • 33947252154 scopus 로고    scopus 로고
    • Network-based prediction of protein function
    • R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein function. Mol. Syst. Biol., 3:88, 2007.
    • (2007) Mol. Syst. Biol , vol.3 , pp. 88
    • Sharan, R.1    Ulitsky, I.2    Shamir, R.3
  • 71
    • 59849089151 scopus 로고    scopus 로고
    • PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data
    • T. Hawkins, M. Chitale, S. Luban, and D. Kihara. PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data. Proteins, 74:566-582, 2009.
    • (2009) Proteins , vol.74 , pp. 566-582
    • Hawkins, T.1    Chitale, M.2    Luban, S.3    Kihara, D.4
  • 72
    • 50949093079 scopus 로고    scopus 로고
    • Protein function prediction with high-throughput data
    • X. M. Zhao, L. Chen, and K. Aihara. Protein function prediction with high-throughput data. Amino Acids, 35:517-530, 2008.
    • (2008) Amino Acids , vol.35 , pp. 517-530
    • Zhao, X.M.1    Chen, L.2    Aihara, K.3
  • 73
    • 0038699587 scopus 로고    scopus 로고
    • Global protein function prediction from protein-protein interaction networks
    • A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function prediction from protein-protein interaction networks. Nat. Biotechnol., 21:697-700, 2003.
    • (2003) Nat. Biotechnol , vol.21 , pp. 697-700
    • Vazquez, A.1    Flammini, A.2    Maritan, A.3    Vespignani, A.4
  • 76
    • 67649868148 scopus 로고    scopus 로고
    • ESG: Extended similarity group method for automated protein function prediction
    • M. Chitale, T. Hawkins, C. Park, and D. Kihara. ESG: Extended similarity group method for automated protein function prediction. Bioinformatics, 25:1739-1745, 2009.
    • (2009) Bioinformatics , vol.25 , pp. 1739-1745
    • Chitale, M.1    Hawkins, T.2    Park, C.3    Kihara, D.4
  • 77
    • 3142622851 scopus 로고    scopus 로고
    • An integrated probabilistic model for functional prediction of proteins
    • M. Deng, T. Chen, and F. Sun. An integrated probabilistic model for functional prediction of proteins. J. Comput. Biol., 11:463-475, 2004.
    • (2004) J. Comput. Biol , vol.11 , pp. 463-475
    • Deng, M.1    Chen, T.2    Sun, F.3
  • 78
    • 0742304254 scopus 로고    scopus 로고
    • Prediction of protein function using proteinprotein interaction data
    • M. Deng, K. Zhang, S. Mehta, T. Chen, and F. Sun. Prediction of protein function using proteinprotein interaction data. J. Comput. Biol., 10:947-960, 2003.
    • (2003) J. Comput. Biol , vol.10 , pp. 947-960
    • Deng, M.1    Zhang, K.2    Mehta, S.3    Chen, T.4    Sun, F.5
  • 80
    • 0346801873 scopus 로고    scopus 로고
    • The Gene Ontology (GO) database and informatics resource
    • M. A. Harris, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res., 32:D258-D261, 2004.
    • (2004) Nucleic Acids Res , vol.32 , pp. D258-D261
    • Harris, M.A.1
  • 81
    • 1542271409 scopus 로고    scopus 로고
    • Predicting protein function from protein/protein interaction data: A probabilistic approach
    • S. Letovsky and S. Kasif. Predicting protein function from protein/protein interaction data: A probabilistic approach. Bioinformatics, 19 (Suppl 1):i197-i204, 2003.
    • (2003) Bioinformatics , vol.19 , pp. i197-i204
    • Letovsky, S.1    Kasif, S.2
  • 83
    • 77949748403 scopus 로고    scopus 로고
    • Bayesian Markov random field analysis for protein function prediction based on network data
    • Y. A. Kourmpetis, A. D. van Dijk, M. C. Bink, R. C. van Ham, and C. J. ter Braak. Bayesian Markov random field analysis for protein function prediction based on network data. PLoS ONE, 5:e9293, 2010.
    • (2010) Plos ONE , vol.5
    • Kourmpetis, Y.A.1    Van Dijk, A.D.2    Bink, M.C.3    Van Ham, R.C.4    Ter Braak, C.J.5
  • 84
    • 2342435295 scopus 로고    scopus 로고
    • Mapping Gene Ontology to proteins based on protein-protein interaction data
    • M. Deng, Z. Tu, F. Sun, and T. Chen. Mapping Gene Ontology to proteins based on protein-protein interaction data. Bioinformatics, 20:895-902, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 895-902
    • Deng, M.1    Tu, Z.2    Sun, F.3    Chen, T.4
  • 85
    • 51349095199 scopus 로고    scopus 로고
    • Free energy estimates of all-atom protein structures using generalized belief propagation
    • H. Kamisetty, E. P. Xing, and C. J. Langmead. Free energy estimates of all-atom protein structures using generalized belief propagation. J. Comput. Biol., 15:755-766, 2008.
    • (2008) J. Comput. Biol , vol.15 , pp. 755-766
    • Kamisetty, H.1    Xing, E.P.2    Langmead, C.J.3
  • 86
    • 67650439454 scopus 로고    scopus 로고
    • Boosting protein threading accuracy
    • J. Peng and J. Xu. Boosting protein threading accuracy. Lect. Notes Comput. Sci., 5541:31, 2009.
    • (2009) Lect. Notes Comput. Sci , vol.5541 , pp. 31
    • Peng, J.1    Xu, J.2
  • 87
    • 77954179479 scopus 로고    scopus 로고
    • Fragment-free approach to protein folding using conditional neural fields
    • F. Zhao, J. Peng, and J. Xu. Fragment-free approach to protein folding using conditional neural fields. Bioinformatics, 26:i310-i317, 2010.
    • (2010) Bioinformatics , vol.26 , pp. i310-i317
    • Zhao, F.1    Peng, J.2    Xu, J.3
  • 88
    • 50849085804 scopus 로고    scopus 로고
    • Discriminative learning for protein conformation sampling
    • F. Zhao, S. Li, B.W. Sterner, and J. Xu. Discriminative learning for protein conformation sampling. Proteins, 73:228-240, 2008.
    • (2008) Proteins , vol.73 , pp. 228-240
    • Zhao, F.1    Li, S.2    Sterner, B.W.3    Xu, J.4
  • 89
    • 74249119329 scopus 로고    scopus 로고
    • Critical assessment of methods of protein structure prediction-Round VIII
    • J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, and A. Tramontano. Critical assessment of methods of protein structure prediction-Round VIII. Proteins, 77 (Suppl 9):1-4, 2009.
    • (2009) Proteins , vol.77 , pp. 1-4
    • Moult, J.1    Fidelis, K.2    Kryshtafovych, A.3    Rost, B.4    Tramontano, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.