-
1
-
-
0014757386
-
A general method applicable to the search for similarities in the amino acid sequence of two proteins
-
S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443-453, 1970.
-
(1970)
J. Mol. Biol
, vol.48
, pp. 443-453
-
-
Needleman, S.B.1
Wunsch, C.D.2
-
2
-
-
0019887799
-
Identification of common molecular subsequences
-
T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147:195-197, 1981.
-
(1981)
J. Mol. Biol
, vol.147
, pp. 195-197
-
-
Smith, T.F.1
Waterman, M.S.2
-
3
-
-
0025183708
-
Basic local alignment search tool
-
S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool. J. Mol. Biol., 215:403-410, 1990.
-
(1990)
J. Mol. Biol
, vol.215
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
4
-
-
0030801002
-
Gapped BLAST and PSI-BLAST: Anewgeneration of protein database search programs
-
S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. Gapped BLAST and PSI-BLAST: Anewgeneration of protein database search programs. Nucleic Acids Res., 25:3389-3402, 1997.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 3389-3402
-
-
Altschul, S.F.1
Madden, T.L.2
Schaffer, A.A.3
Zhang, J.4
Zhang, Z.5
Miller, W.6
Lipman, D.J.7
-
5
-
-
0023989064
-
Improved tools for biological sequence comparison
-
W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA, 85:2444-2448, 1988.
-
(1988)
Proc. Natl. Acad. Sci. USA
, vol.85
, pp. 2444-2448
-
-
Pearson, W.R.1
Lipman, D.J.2
-
6
-
-
0019082587
-
Fast algorithm for predicting the secondary structure of singlestranded RNA
-
R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary structure of singlestranded RNA. Proc. Natl. Acad. Sci USA, 77:6309-6313, 1980.
-
(1980)
Proc. Natl. Acad. Sci USA
, vol.77
, pp. 6309-6313
-
-
Nussinov, R.1
Jacobson, A.B.2
-
7
-
-
0029948001
-
SSAP: Sequential structure alignment program for protein structure comparison
-
C. A. Orengo and W. R. Taylor. SSAP: Sequential structure alignment program for protein structure comparison. Methods Enzymol., 266:617-635, 1996.
-
(1996)
Methods Enzymol
, vol.266
, pp. 617-635
-
-
Orengo, C.A.1
Taylor, W.R.2
-
8
-
-
0031715982
-
Protein structure alignment by incremental combinatorial extension (CE) of the optimal path
-
I. N. Shindyalov and P. E. Bourne. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng., 11:739-747, 1998.
-
(1998)
Protein Eng
, vol.11
, pp. 739-747
-
-
Shindyalov, I.N.1
Bourne, P.E.2
-
9
-
-
78649797219
-
Effect of using suboptimal alignments in template-based protein structure prediction
-
H. Chen and D. Kihara. Effect of using suboptimal alignments in template-based protein structure prediction. Proteins, 79:315-334, 2011.
-
(2011)
Proteins
, vol.79
, pp. 315-334
-
-
Chen, H.1
Kihara, D.2
-
10
-
-
0035866002
-
Defrosting the frozen approximation: PROSPECTOR—A new approach to threading
-
J. Skolnick and D. Kihara. Defrosting the frozen approximation: PROSPECTOR—A new approach to threading. Proteins, 42:319-331, 2001.
-
(2001)
Proteins
, vol.42
, pp. 319-331
-
-
Skolnick, J.1
Kihara, D.2
-
11
-
-
0028579433
-
Protein structural similarities predicted by a sequence-structure compatibility method
-
Y. Matsuo and K. Nishikawa. Protein structural similarities predicted by a sequence-structure compatibility method. Protein Sci., 3:2055-2063, 1994.
-
(1994)
Protein Sci
, vol.3
, pp. 2055-2063
-
-
Matsuo, Y.1
Nishikawa, K.2
-
12
-
-
0003516147
-
-
Cambridge University Press, Cambridge
-
R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, 1998.
-
(1998)
Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids
-
-
Durbin, R.1
Eddy, S.R.2
Krogh, A.3
Mitchison, G.4
-
13
-
-
0027174134
-
Prediction of protein secondary structure by the hidden Markov model
-
K. Asai, S. Hayamizu, and K. Handa. Prediction of protein secondary structure by the hidden Markov model. Comput. Appl. Biosci., 9:141-146, 1993.
-
(1993)
Comput. Appl. Biosci
, vol.9
, pp. 141-146
-
-
Asai, K.1
Hayamizu, S.2
Handa, K.3
-
14
-
-
0031788749
-
III. PASSML: Combining evolutionary inference and protein secondary structure prediction
-
P. Lio, N. Goldman, J. L. Thorne, and D. T. Jones III. PASSML: Combining evolutionary inference and protein secondary structure prediction. Bioinformatics, 14:726-733, 1998.
-
(1998)
Bioinformatics
, vol.14
, pp. 726-733
-
-
Lio, P.1
Goldman, N.2
Thorne, J.L.3
Jones, D.T.4
-
15
-
-
0035910270
-
Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
-
A. Krogh, B. Larsson, G. von Heijne, and E. L. Sonnhammer. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305: 567-80, 2001.
-
(2001)
J. Mol. Biol
, vol.305
, pp. 567-580
-
-
Krogh, A.1
Larsson, B.2
Von Heijne, G.3
Sonnhammer, E.L.4
-
17
-
-
0038278386
-
Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry
-
R. Karchin, M. Cline, Y. Mandel-Gutfreund, and K. Karplus. Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry. Proteins, 51: 504-14, 2003.
-
(2003)
Proteins
, vol.51
, pp. 504-514
-
-
Karchin, R.1
Cline, M.2
Mandel-Gutfreund, Y.3
Karplus, K.4
-
18
-
-
74249104499
-
Fast and accurate automatic structure prediction with HHpred
-
A. Hildebrand, M. Remmert, A. Biegert, and J. Soding. Fast and accurate automatic structure prediction with HHpred. Proteins, 77 (Suppl 9):128-132, 2009.
-
(2009)
Proteins
, vol.77
, pp. 128-132
-
-
Hildebrand, A.1
Remmert, M.2
Biegert, A.3
Soding, J.4
-
20
-
-
0033578684
-
Protein secondary structure prediction based on position-specific scoring matrices
-
D. T. Jones. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol., 292:195-202, 1999.
-
(1999)
J. Mol. Biol
, vol.292
, pp. 195-202
-
-
Jones, D.T.1
-
21
-
-
0030038634
-
Topology prediction for helical transmembrane proteins at 86% accuracy
-
B. Rost, P. Fariselli, and R. Casadio. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci., 5:1704-1718, 1996.
-
(1996)
Protein Sci
, vol.5
, pp. 1704-1718
-
-
Rost, B.1
Fariselli, P.2
Casadio, R.3
-
22
-
-
0036122073
-
Prediction of protein-protein interaction sites in heterocomplexes with neural networks
-
P. Fariselli, F. Pazos, A. Valencia, and R. Casadio. Prediction of protein-protein interaction sites in heterocomplexes with neural networks. Eur. J Biochem., 269:1356-1361, 2002.
-
(2002)
Eur. J Biochem
, vol.269
, pp. 1356-1361
-
-
Fariselli, P.1
Pazos, F.2
Valencia, A.3
Casadio, R.4
-
23
-
-
34250877416
-
Protein docking using surface matching and supervised machine learning
-
A. J. Bordner and A. A. Gorin. Protein docking using surface matching and supervised machine learning. Proteins, 68:488-502, 2007.
-
(2007)
Proteins
, vol.68
, pp. 488-502
-
-
Bordner, A.J.1
Gorin, A.A.2
-
24
-
-
1542346418
-
A novel method for protein secondary structure prediction using dual-layer SVM and profiles
-
J. Guo, H. Chen, Z. Sun, and Y. Lin. A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Proteins 54:738-743, 2004.
-
(2004)
Proteins
, vol.54
, pp. 738-743
-
-
Guo, J.1
Chen, H.2
Sun, Z.3
Lin, Y.4
-
25
-
-
34548567232
-
POODLE-L: A two-level SVM prediction system for reliably predicting long disordered regions
-
S. Hirose, K. Shimizu, S. Kanai, Y. Kuroda, and T. Noguchi. POODLE-L: A two-level SVM prediction system for reliably predicting long disordered regions. Bioinformatics, 23:2046-2053, 2007.
-
(2007)
Bioinformatics
, vol.23
, pp. 2046-2053
-
-
Hirose, S.1
Shimizu, K.2
Kanai, S.3
Kuroda, Y.4
Noguchi, T.5
-
26
-
-
33748849648
-
Machine learning in bioinformatics
-
P. Larranaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A. Lozano, R. Armananzas, G. Santafe, A. Perez, and V. Robles. Machine learning in bioinformatics. Brief. Bioinformatics, 7:86-112, 2006.
-
(2006)
Brief. Bioinformatics
, vol.7
, pp. 86-112
-
-
Larranaga, P.1
Calvo, B.2
Santana, R.3
Bielza, C.4
Galdiano, J.5
Inza, I.6
Lozano, J.A.7
Armananzas, R.8
Santafe, G.9
Perez, A.10
Robles, V.11
-
27
-
-
84872256757
-
Machine learning and its applications to biology
-
A. L. Tarca, V. J. Carey, X. W. Chen, R. Romero, and S. Draghici. Machine learning and its applications to biology. PLoS Comput. Biol., 3:e116, 2007.
-
(2007)
Plos Comput. Biol
, pp. 3
-
-
Tarca, A.L.1
Carey, V.J.2
Chen, X.W.3
Romero, R.4
Draghici, S.5
-
28
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Y. Saeys, I. Inza, and P. Larranaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 23:2507-2517, 2007.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
29
-
-
34548459831
-
Aprimer on learning in Bayesian networks for computational biology
-
C. J. Needham, J. R. Bradford, A. J. Bulpitt, and D. R. Westhead.Aprimer on learning in Bayesian networks for computational biology. PLoS Comput. Biol., 3:e129, 2007.
-
(2007)
Plos Comput. Biol
, vol.3
-
-
Needham, C.J.1
Bradford, J.R.2
Bulpitt, A.J.3
Westhead, D.R.4
-
30
-
-
79957972049
-
Decision tree and ensemble learning algorithms with their applications in bioinformatics
-
D. Che, Q. Liu, K. Rasheed, and X. Tao. Decision tree and ensemble learning algorithms with their applications in bioinformatics. Adv. Exp. Med. Biol., 696:191-199, 2011.
-
(2011)
Adv. Exp. Med. Biol
, vol.696
, pp. 191-199
-
-
Che, D.1
Liu, Q.2
Rasheed, K.3
Tao, X.4
-
35
-
-
59549087165
-
On discriminative vs. Generative classifiers: A comparison of logistic regression and Naive Bayes
-
A. L. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regression and Naive Bayes. Adv. Neural Inform. Process. Syst. (NIPS), 14, 2002.
-
(2002)
Adv. Neural Inform. Process. Syst. (NIPS)
, pp. 14
-
-
Ng, A.L.1
Jordan, M.I.2
-
36
-
-
83255167044
-
An Introduction to conditional random fields
-
C. Sutton and A. McCallum. An Introduction to conditional random fields. Found. Trends Mach. Learn., 4:267-373, 2011.
-
(2011)
Found. Trends Mach. Learn
, vol.4
, pp. 267-373
-
-
Sutton, C.1
McCallum, A.2
-
37
-
-
0024610919
-
Atutorial on hidden Markov models and selected applications in speech recognition
-
L. R. Rabiner. Atutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77:257-286, 1989.
-
(1989)
Proc. IEEE
, vol.77
, pp. 257-286
-
-
Rabiner, L.R.1
-
38
-
-
0000747663
-
Maximum entropy Markov models for information extraction and segmentation
-
San Francisco, CA
-
A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction and segmentation. International Conference on Machine Learning, San Francisco, CA, 2000, pp 591-598.
-
(2000)
International Conference on Machine Learning
, pp. 591-598
-
-
McCallum, A.1
Freitag, D.2
Pereira, F.3
-
39
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
San Francisco, CA
-
J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proceedings of the 18th International Conference on Machine Learning, San Francisco, CA, 2001, pp 282-289.
-
(2001)
Proceedings of the 18Th International Conference on Machine Learning
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
41
-
-
0344120654
-
Discriminative random fields: A discriminative framework for contextual interaction in classification
-
Nice, France
-
S. Kumar and M. Hebert. Discriminative random fields: A discriminative framework for contextual interaction in classification. Paper presented at the IEEE International Conference on Computer Vision, Nice, France, 2003, pp 1150-1157.
-
(2003)
Paper Presented at the IEEE International Conference on Computer Vision
, pp. 1150-1157
-
-
Kumar, S.1
Hebert, M.2
-
42
-
-
29244441994
-
An integrated, conditional model of information extraction and coreference with application to citation matching
-
Arlington, Virginia
-
B. Wellner, A. McCallum, F. Peng, and M. Hay. An integrated, conditional model of information extraction and coreference with application to citation matching. Paper presented at the Conference on Uncertainty in Artificial Intelligence (UAI), Arlington, Virginia, 2004, pp 593-601.
-
(2004)
Paper Presented at the Conference on Uncertainty in Artificial Intelligence (UAI)
, pp. 593-601
-
-
Wellner, B.1
McCallum, A.2
Peng, F.3
Hay, M.4
-
43
-
-
34250731290
-
Accelerated training of conditional random fields with stochastic gradient methods
-
New York, NY
-
S. V. N. Vishwanathan, N. N. Schraudolph, M.W. Schmidt, and P. Kevin. Accelerated training of conditional random fields with stochastic gradient methods. Paper presented at the International Conference on Machine Learning, New York, NY, 2006, pp 969-976.
-
(2006)
Paper Presented at the International Conference on Machine Learning
, pp. 969-976
-
-
Vishwanathan, S.V.N.1
Schraudolph, N.N.2
Schmidt, M.W.3
Kevin, P.4
-
45
-
-
0002425879
-
Loopy belief propagation for approximate inference: An empirical study
-
San Francisco, CA
-
K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate inference: An empirical study. In Proceedings of Uncertainty in Artificial Inteligence, San Francisco, CA, 1999, pp 467-475.
-
(1999)
Proceedings of Uncertainty in Artificial Inteligence
, pp. 467-475
-
-
Murphy, K.P.1
Weiss, Y.2
Jordan, M.I.3
-
46
-
-
3242679207
-
A generalized mean field algorithm for variational inference in exponential families
-
San Francisco, CA
-
E. P. Xing, M. I. Jordan, and S. Russell. A generalized mean field algorithm for variational inference in exponential families. Paper presented at the Conference on Uncertainty in Artificial Intelligence (UAI), San Francisco, CA, 2003, pp 583-591.
-
(2003)
Paper Presented at the Conference on Uncertainty in Artificial Intelligence (UAI)
, pp. 583-591
-
-
Xing, E.P.1
Jordan, M.I.2
Russell, S.3
-
48
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711-732, 1995.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.J.1
-
52
-
-
33645964629
-
Protein fold recognition using segmentation conditional random fields (SCRFs)
-
Y. Liu, J. Carbonell, P. Weigele, and V. Gopalakrishnan. Protein fold recognition using segmentation conditional random fields (SCRFs). J. Comput. Biol., Barbados, 13:394-406, 2006.
-
(2006)
J. Comput. Biol., Barbados
, vol.13
, pp. 394-406
-
-
Liu, Y.1
Carbonell, J.2
Weigele, P.3
Gopalakrishnan, V.4
-
54
-
-
77649264846
-
A graphical model relating features, objects and scenes
-
A. Torralba, W. T. MurFreeman, and K. P. Murphy. Using the forest to see the trees: A graphical model relating features, objects and scenes. Commun. ACM, 53:107-114, 2010.
-
(2010)
Commun. ACM
, vol.53
, pp. 107-114
-
-
Torralba, A.1
Murfreeman, W.T.2
Murphy, K.P.3
-
56
-
-
71149098112
-
Learning from measurements in exponential families
-
Montreal, Canada
-
P. Liang, M. I. Jordan, and D. Klein. Learning from measurements in exponential families. Paper presented at the International Conference on Machine Learning, Montreal, Canada, 2009, pp 641-648.
-
(2009)
Paper Presented at the International Conference on Machine Learning
, pp. 641-648
-
-
Liang, P.1
Jordan, M.I.2
Klein, D.3
-
61
-
-
0036796369
-
SURVEY AND SUMMARY: Current methods of gene prediction, their strengths and weaknesses
-
C. Mathe, M.-F. Sagot, T. Schiex, and P. Rouzé. SURVEY AND SUMMARY: Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res. 2002, 30:4103-4117.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 4103-4117
-
-
Mathe, C.1
Sagot, M.-F.2
Schiex, T.3
Rouzé, P.4
-
62
-
-
34548390530
-
Conrad: Gene prediction using conditional random fields
-
D. DeCaprio, J. P. Vinson, M. D. Pearson, P. Montgomery, M. Doherty, and J. E. Galagan. Conrad: Gene prediction using conditional random fields. Genome Res., 17:1389-1398, 2007.
-
(2007)
Genome Res
, vol.17
, pp. 1389-1398
-
-
Decaprio, D.1
Vinson, J.P.2
Pearson, M.D.3
Montgomery, P.4
Doherty, M.5
Galagan, J.E.6
-
63
-
-
34047200354
-
Global discriminative learning for higher-accuracy computational gene prediction
-
A. Bernal, K. Crammer, A. Hatzigeorgiou, and F. Pereira. Global discriminative learning for higher-accuracy computational gene prediction. PLoS Comput. Biol., 3:e54, 2007.
-
(2007)
Plos Comput. Biol
, vol.3
-
-
Bernal, A.1
Crammer, K.2
Hatzigeorgiou, A.3
Pereira, F.4
-
65
-
-
40449115745
-
CONTRAST:Adiscriminative, phylogeny-free approach to multiple informant de novo gene prediction
-
S. S. Gross, C. B. Do, M. Sirota, and S. Batzoglou. CONTRAST:Adiscriminative, phylogeny-free approach to multiple informant de novo gene prediction. Genome Biol., 8:R269, 2007.
-
(2007)
Genome Biol
, vol.8
-
-
Gross, S.S.1
Do, C.B.2
Sirota, M.3
Batzoglou, S.4
-
66
-
-
33747086886
-
Using ESTs to improve the accuracy of de novo gene prediction
-
C. Wei and M. R. Brent. Using ESTs to improve the accuracy of de novo gene prediction. BMC Bioinformatics, 7:327, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 327
-
-
Wei, C.1
Brent, M.R.2
-
67
-
-
84864055319
-
Comparative gene prediction using conditional random fields
-
J. P. Vinson, D. DeCaprio, M. D. Pearson, S. Luoma, and J. E. Galagan. Comparative gene prediction using conditional random fields. Adv. Neural Inform. Process. Syst., 19:1441-1448, 2007.
-
(2007)
Adv. Neural Inform. Process. Syst
, vol.19
, pp. 1441-1448
-
-
Vinson, J.P.1
Decaprio, D.2
Pearson, M.D.3
Luoma, S.4
Galagan, J.E.5
-
68
-
-
19844374535
-
Begin at the beginning: Predicting genes with 5UTRs
-
R. H. Brown, S. S. Gross, and M. R. Brent. Begin at the beginning: Predicting genes with 5 UTRs. Genome Res., 15:742-747, 2005.
-
(2005)
Genome Res
, vol.15
, pp. 742-747
-
-
Brown, R.H.1
Gross, S.S.2
Brent, M.R.3
-
69
-
-
84943274699
-
A direct adaptive method for faster backpropagation learning: The RPROP algorithm
-
M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. IEEE Int. Conf. Neural Networks, 1:586-591, 1993.
-
(1993)
IEEE Int. Conf. Neural Networks
, vol.1
, pp. 586-591
-
-
Riedmiller, M.1
Braun, H.2
-
70
-
-
33947252154
-
Network-based prediction of protein function
-
R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein function. Mol. Syst. Biol., 3:88, 2007.
-
(2007)
Mol. Syst. Biol
, vol.3
, pp. 88
-
-
Sharan, R.1
Ulitsky, I.2
Shamir, R.3
-
71
-
-
59849089151
-
PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data
-
T. Hawkins, M. Chitale, S. Luban, and D. Kihara. PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data. Proteins, 74:566-582, 2009.
-
(2009)
Proteins
, vol.74
, pp. 566-582
-
-
Hawkins, T.1
Chitale, M.2
Luban, S.3
Kihara, D.4
-
72
-
-
50949093079
-
Protein function prediction with high-throughput data
-
X. M. Zhao, L. Chen, and K. Aihara. Protein function prediction with high-throughput data. Amino Acids, 35:517-530, 2008.
-
(2008)
Amino Acids
, vol.35
, pp. 517-530
-
-
Zhao, X.M.1
Chen, L.2
Aihara, K.3
-
73
-
-
0038699587
-
Global protein function prediction from protein-protein interaction networks
-
A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function prediction from protein-protein interaction networks. Nat. Biotechnol., 21:697-700, 2003.
-
(2003)
Nat. Biotechnol
, vol.21
, pp. 697-700
-
-
Vazquez, A.1
Flammini, A.2
Maritan, A.3
Vespignani, A.4
-
75
-
-
85101476762
-
Automated prediction of protein function from sequence
-
J. Bujnicki (Ed.), Wiley, Hoboken, NJ
-
M. Chitale, T. Hawkins, and D. Kihara. Automated prediction of protein function from sequence. In J. Bujnicki (Ed.), Prediction of Protein Strucutre, Functions, and Interactions.Wiley, Hoboken, NJ, 2009.
-
(2009)
Prediction of Protein Strucutre, Functions, and Interactions
-
-
Chitale, M.1
Hawkins, T.2
Kihara, D.3
-
76
-
-
67649868148
-
ESG: Extended similarity group method for automated protein function prediction
-
M. Chitale, T. Hawkins, C. Park, and D. Kihara. ESG: Extended similarity group method for automated protein function prediction. Bioinformatics, 25:1739-1745, 2009.
-
(2009)
Bioinformatics
, vol.25
, pp. 1739-1745
-
-
Chitale, M.1
Hawkins, T.2
Park, C.3
Kihara, D.4
-
77
-
-
3142622851
-
An integrated probabilistic model for functional prediction of proteins
-
M. Deng, T. Chen, and F. Sun. An integrated probabilistic model for functional prediction of proteins. J. Comput. Biol., 11:463-475, 2004.
-
(2004)
J. Comput. Biol
, vol.11
, pp. 463-475
-
-
Deng, M.1
Chen, T.2
Sun, F.3
-
78
-
-
0742304254
-
Prediction of protein function using proteinprotein interaction data
-
M. Deng, K. Zhang, S. Mehta, T. Chen, and F. Sun. Prediction of protein function using proteinprotein interaction data. J. Comput. Biol., 10:947-960, 2003.
-
(2003)
J. Comput. Biol
, vol.10
, pp. 947-960
-
-
Deng, M.1
Zhang, K.2
Mehta, S.3
Chen, T.4
Sun, F.5
-
79
-
-
0036081347
-
A database for genomes and protein sequences
-
H.W. Mewes, D. Frishman, U. Guldener, G. Mannhaupt, K. Mayer, M. Mokrejs, B. Morgenstern, M. Munsterkotter, S. Rudd, and B. Weil. MIPS: A database for genomes and protein sequences. Nucleic Acids Res., 30:31-34, 2002.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 31-34
-
-
Mewes, H.W.1
Frishman, D.2
Guldener, U.3
Mannhaupt, G.4
Mayer, K.5
Mokrejs, M.6
Morgenstern, B.7
Munsterkotter, M.8
Rudd, S.9
Mips, B.W.10
-
80
-
-
0346801873
-
The Gene Ontology (GO) database and informatics resource
-
M. A. Harris, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res., 32:D258-D261, 2004.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. D258-D261
-
-
Harris, M.A.1
-
81
-
-
1542271409
-
Predicting protein function from protein/protein interaction data: A probabilistic approach
-
S. Letovsky and S. Kasif. Predicting protein function from protein/protein interaction data: A probabilistic approach. Bioinformatics, 19 (Suppl 1):i197-i204, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. i197-i204
-
-
Letovsky, S.1
Kasif, S.2
-
82
-
-
78651328883
-
The BioGRID Interaction Database: 2011 update
-
C. Stark, B. J. Breitkreutz, A. Chatr-Aryamontri, L. Boucher, R. Oughtred, M. S. Livstone, J. Nixon, A. K. Van, X. Wang, X. Shi, T. Reguly, J. M. Rust, A. Winter, K. Dolinski, and M. Tyers. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res., 39:D698-D704, 2011.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. D698-D704
-
-
Stark, C.1
Breitkreutz, B.J.2
Chatr-Aryamontri, A.3
Boucher, L.4
Oughtred, R.5
Livstone, M.S.6
Nixon, J.7
Van, A.K.8
Wang, X.9
Shi, X.10
Reguly, T.11
Rust, J.M.12
Winter, A.13
Dolinski, K.14
Tyers, M.15
-
83
-
-
77949748403
-
Bayesian Markov random field analysis for protein function prediction based on network data
-
Y. A. Kourmpetis, A. D. van Dijk, M. C. Bink, R. C. van Ham, and C. J. ter Braak. Bayesian Markov random field analysis for protein function prediction based on network data. PLoS ONE, 5:e9293, 2010.
-
(2010)
Plos ONE
, vol.5
-
-
Kourmpetis, Y.A.1
Van Dijk, A.D.2
Bink, M.C.3
Van Ham, R.C.4
Ter Braak, C.J.5
-
84
-
-
2342435295
-
Mapping Gene Ontology to proteins based on protein-protein interaction data
-
M. Deng, Z. Tu, F. Sun, and T. Chen. Mapping Gene Ontology to proteins based on protein-protein interaction data. Bioinformatics, 20:895-902, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 895-902
-
-
Deng, M.1
Tu, Z.2
Sun, F.3
Chen, T.4
-
85
-
-
51349095199
-
Free energy estimates of all-atom protein structures using generalized belief propagation
-
H. Kamisetty, E. P. Xing, and C. J. Langmead. Free energy estimates of all-atom protein structures using generalized belief propagation. J. Comput. Biol., 15:755-766, 2008.
-
(2008)
J. Comput. Biol
, vol.15
, pp. 755-766
-
-
Kamisetty, H.1
Xing, E.P.2
Langmead, C.J.3
-
86
-
-
67650439454
-
Boosting protein threading accuracy
-
J. Peng and J. Xu. Boosting protein threading accuracy. Lect. Notes Comput. Sci., 5541:31, 2009.
-
(2009)
Lect. Notes Comput. Sci
, vol.5541
, pp. 31
-
-
Peng, J.1
Xu, J.2
-
87
-
-
77954179479
-
Fragment-free approach to protein folding using conditional neural fields
-
F. Zhao, J. Peng, and J. Xu. Fragment-free approach to protein folding using conditional neural fields. Bioinformatics, 26:i310-i317, 2010.
-
(2010)
Bioinformatics
, vol.26
, pp. i310-i317
-
-
Zhao, F.1
Peng, J.2
Xu, J.3
-
88
-
-
50849085804
-
Discriminative learning for protein conformation sampling
-
F. Zhao, S. Li, B.W. Sterner, and J. Xu. Discriminative learning for protein conformation sampling. Proteins, 73:228-240, 2008.
-
(2008)
Proteins
, vol.73
, pp. 228-240
-
-
Zhao, F.1
Li, S.2
Sterner, B.W.3
Xu, J.4
-
89
-
-
74249119329
-
Critical assessment of methods of protein structure prediction-Round VIII
-
J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, and A. Tramontano. Critical assessment of methods of protein structure prediction-Round VIII. Proteins, 77 (Suppl 9):1-4, 2009.
-
(2009)
Proteins
, vol.77
, pp. 1-4
-
-
Moult, J.1
Fidelis, K.2
Kryshtafovych, A.3
Rost, B.4
Tramontano, A.5
|