메뉴 건너뛰기




Volumn 15, Issue 1, 2015, Pages

Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection

Author keywords

Drug sensitivity prediction; Feature selection; Recursive feature elimination

Indexed keywords

5 (2,6 DICHLOROBENZYLSULFONYL) 3 [3,5 DIMETHYL 4 [2 (1 PYRROLIDINYLMETHYL) 1 PYRROLIDINYLCARBONYL] 1H PYRROL 2 YLMETHYLENE] 1,3 DIHYDRO 2H INDOL 2 ONE; 5 CHLORO 4 [[2 (ISOPROPYLSULFONYL)PHENYL]AMINO] 2 [[2 METHOXY 4 [4 (4 METHYL 1 PIPERAZINYL) 1 PIPERIDINYL]PHENYL]AMINO]PYRIMIDINE; AEW 541; ANTINEOPLASTIC AGENT; CHIR 265; CRIZOTINIB; DOVITINIB; ERLOTINIB; IRINOTECAN; LAPATINIB; LBW 242; N (2,3 DIHYDROXYPROPOXY) 3,4 DIFLUORO 2 (2 FLUORO 4 IODOANILINO)BENZAMIDE; N [3 (5 CHLORO 1H PYRROLO[2,3 B]PYRIDINE 3 CARBONYL) 2,4 DIFLUOROPHENYL]PROPANESULFONAMIDE; NUTLIN 3; PACLITAXEL; PALBOCICLIB; PANOBINOSTAT; SARACATINIB; SELUMETINIB; SORAFENIB; TANESPIMYCIN; TOPOTECAN; UNCLASSIFIED DRUG; VANDETANIB; TUMOR PROTEIN;

EID: 84934276279     PISSN: None     EISSN: 14712407     Source Type: Journal    
DOI: 10.1186/s12885-015-1492-6     Document Type: Article
Times cited : (120)

References (29)
  • 1
    • 33644529130 scopus 로고    scopus 로고
    • Capturing complex 3D tissue physiology in vitro
    • Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Bio. 2006;7(3):211-24.
    • (2006) Nat Rev Mol Cell Bio , vol.7 , Issue.3 , pp. 211-224
    • Griffith, L.G.1    Swartz, M.A.2
  • 2
    • 64249106832 scopus 로고    scopus 로고
    • Mouse xenograft models vs GEM models for human cancer therapeutics
    • Richmond A, Su YJ. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech. 2008;1(2-3):78-82.
    • (2008) Dis Model Mech , vol.1 , Issue.2-3 , pp. 78-82
    • Richmond, A.1    Su, Y.J.2
  • 5
    • 33749011163 scopus 로고    scopus 로고
    • The NCI60 human tumour cell line anticancer drug screen
    • Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6(10):813-23.
    • (2006) Nat Rev Cancer , vol.6 , Issue.10 , pp. 813-823
    • Shoemaker, R.H.1
  • 7
    • 43449088832 scopus 로고    scopus 로고
    • A modular approach for integrative analysis of large-scale gene-expression and drug-response data
    • Kutalik Z, Beckmann JS, Bergmann S. A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nat Biotechnol. 2008;26(5):531-9.
    • (2008) Nat Biotechnol , vol.26 , Issue.5 , pp. 531-539
    • Kutalik, Z.1    Beckmann, J.S.2    Bergmann, S.3
  • 8
  • 14
    • 79951865370 scopus 로고    scopus 로고
    • Clinical Implications of the Cancer Genome
    • MacConaill LE, Garraway LA. Clinical Implications of the Cancer Genome. J Clin Oncol. 2010;28(35):5219-27.
    • (2010) J Clin Oncol , vol.28 , Issue.35 , pp. 5219-5227
    • MacConaill, L.E.1    Garraway, L.A.2
  • 15
    • 84887084613 scopus 로고    scopus 로고
    • Designing personalized cancer treatments
    • Cree IA. Designing personalized cancer treatments. J Control Release. 2013;172(2):405-9.
    • (2013) J Control Release , vol.172 , Issue.2 , pp. 405-409
    • Cree, I.A.1
  • 17
    • 84897951842 scopus 로고    scopus 로고
    • Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines
    • Geeleher P, Cox NJ, Huang SR, et al. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014;15:R47.
    • (2014) Genome Biol , vol.15 , pp. R47
    • Geeleher, P.1    Cox, N.J.2    Huang, S.R.3
  • 18
    • 67349259624 scopus 로고    scopus 로고
    • A new feature method on classification of medical datasets: Kernel F-score feature selection
    • Polat K, GüneŞ S. A new feature method on classification of medical datasets: Kernel F-score feature selection. ESWA. 2009;36(7):10367-73.
    • (2009) ESWA , vol.36 , Issue.7 , pp. 10367-10373
    • Polat, K.1    GüneŞ, S.2
  • 19
    • 77951494965 scopus 로고    scopus 로고
    • Feature Selection based F-score and ACO Algorithm in Support Vector Machine
    • Ding S. Feature Selection based F-score and ACO Algorithm in Support Vector Machine. Knowledge Acquisition and Modeling. 2009;1:19-23.
    • (2009) Knowledge Acquisition and Modeling , vol.1 , pp. 19-23
    • Ding, S.1
  • 20
    • 84883640831 scopus 로고    scopus 로고
    • A balanced iterative random forest for gene selection from microarray data
    • Anaissi A, Kennedy PJ, Goyal M, Catchpoole DR. A balanced iterative random forest for gene selection from microarray data. BMC Bioinformatics. 2013;14:261.
    • (2013) BMC Bioinformatics , vol.14 , pp. 261
    • Anaissi, A.1    Kennedy, P.J.2    Goyal, M.3    Catchpoole, D.R.4
  • 21
    • 84905489545 scopus 로고    scopus 로고
    • Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data
    • Jang IS, Neto EC, Guinney J, Friend SH, Margolin AA. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. PSB. 2014;19:63-74.
    • (2014) PSB , vol.19 , pp. 63-74
    • Jang, I.S.1    Neto, E.C.2    Guinney, J.3    Friend, S.H.4    Margolin, A.A.5
  • 22
    • 84882741504 scopus 로고    scopus 로고
    • QuackenbushJ, Haibe-Kains B: Comparison and validation of genomic predictors for anticancer drug sensitivity
    • Papillon-Cavanagh S, De Jay N, Hachem N, Olsen C, Bontempi G, Aerts HJ. QuackenbushJ, Haibe-Kains B: Comparison and validation of genomic predictors for anticancer drug sensitivity. J Am Med InformAssoc. 2013;20(4):597-602.
    • (2013) J Am Med InformAssoc , vol.20 , Issue.4 , pp. 597-602
    • Papillon-Cavanagh, S.1    Jay, N.2    Hachem, N.3    Olsen, C.4    Bontempi, G.5    Aerts, H.J.6
  • 23
    • 33644521213 scopus 로고    scopus 로고
    • Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma
    • Fong CW, Chua MS, McKie AB, Ling SHM, Mason L, Li R, Lo TL, Leung HY, So SKS, et al. Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res. 2006;66(4):2048-58.
    • (2006) Cancer Res , vol.66 , Issue.4 , pp. 2048-2058
    • Fong, C.W.1    Chua, M.S.2    McKie, A.B.3    Ling, S.H.M.4    Mason, L.5    Li, R.6    Lo, T.L.7    Leung, H.Y.8    So, S.K.S.9
  • 25
    • 84863599034 scopus 로고    scopus 로고
    • Screening of significantly hypermethylated genes in breast cancer using microarray-based methylated-CpG island recovery assay and identification of their expression levels
    • Lian ZQ, Wang Q, Li WP, Zhang AQ, Wu L. Screening of significantly hypermethylated genes in breast cancer using microarray-based methylated-CpG island recovery assay and identification of their expression levels. Int J Oncol. 2012;41(2):629-38.
    • (2012) Int J Oncol , vol.41 , Issue.2 , pp. 629-638
    • Lian, Z.Q.1    Wang, Q.2    Li, W.P.3    Zhang, A.Q.4    Wu, L.5
  • 26
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 28
    • 85015165798 scopus 로고    scopus 로고
    • Random Forests Feature Selection with Kernel Partial Least Squares: Detecting Ischemia from MagnetoCardiograms
    • Han L, Embrechts MJ, Szymanski B, Sternickel K, Ross A. Random Forests Feature Selection with Kernel Partial Least Squares: Detecting Ischemia from MagnetoCardiograms. ESANN 2006,V1:221-226.
    • (2006) ESANN. , vol.V1 , pp. 221-226
    • Han, L.1    Embrechts, M.J.2    Szymanski, B.3    Sternickel, K.4    Ross, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.