메뉴 건너뛰기




Volumn , Issue , 2014, Pages 63-74

Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data

Author keywords

Cancer cell lines; Machine learning; Pharmacogenomics; Predictive modeling

Indexed keywords

ARTIFICIAL INTELLIGENCE; CELL CULTURE; DISEASES; FORECASTING; GENE EXPRESSION; LEARNING SYSTEMS; OPEN SOURCE SOFTWARE; REGRESSION ANALYSIS; STATISTICS;

EID: 84905489545     PISSN: 23356928     EISSN: 23356936     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (170)

References (27)
  • 5
    • 84859169877 scopus 로고    scopus 로고
    • Barretina, J., et al., Nature 483, 603-607 (2012).
    • (2012) Nature , vol.483 , pp. 603-607
    • Barretina, J.1
  • 7
    • 84859187259 scopus 로고    scopus 로고
    • Garnett, M. J., et al., Nature 483, 570-587 (2012).
    • (2012) Nature , vol.483 , pp. 570-587
    • Garnett, M.J.1
  • 20
    • 84977875799 scopus 로고    scopus 로고
    • CCLE data portal. Available from: http://www.broadinstitute.org/ccle/home.
    • CCLE Data Portal
  • 22
    • 84977880526 scopus 로고    scopus 로고
    • Xu, C. J., et al., Plos One 7, 8 (2012).
    • (2012) Plos One , vol.7 , pp. 8
    • Xu, C.J.1
  • 24
    • 84859825629 scopus 로고    scopus 로고
    • Wei, G., et al., Cancer Cell 21, 547-562 (2012).
    • (2012) Cancer Cell , vol.21 , pp. 547-562
    • Wei, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.