-
1
-
-
0026020414
-
Fatty acid oxidation and ketogenesis by astrocytes in primary culture
-
Auestad N., Korsak R. A., Morrow J. W. and Edmond J. (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J. Neurochem. 56, 1376–1386.
-
(1991)
J. Neurochem.
, vol.56
, pp. 1376-1386
-
-
Auestad, N.1
Korsak, R.A.2
Morrow, J.W.3
Edmond, J.4
-
3
-
-
0031692458
-
Astrocytes are mainly responsible for the polyunsaturated fatty acid enrichment in blood-brain barrier endothelial cells in vitro
-
Bernoud N., Fenart L., Benistant C., Pageaux J. F., Dehouck M. P., Moliere P., Lagarde M., Cecchelli R. and Lecerf J. (1998) Astrocytes are mainly responsible for the polyunsaturated fatty acid enrichment in blood-brain barrier endothelial cells in vitro. J. Lipid Res. 39, 1816–1824.
-
(1998)
J. Lipid Res.
, vol.39
, pp. 1816-1824
-
-
Bernoud, N.1
Fenart, L.2
Benistant, C.3
Pageaux, J.F.4
Dehouck, M.P.5
Moliere, P.6
Lagarde, M.7
Cecchelli, R.8
Lecerf, J.9
-
4
-
-
37149013708
-
A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol
-
Blankman J. L., Simon G. M. and Cravatt B. F. (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14, 1347–1356.
-
(2007)
Chem. Biol.
, vol.14
, pp. 1347-1356
-
-
Blankman, J.L.1
Simon, G.M.2
Cravatt, B.F.3
-
5
-
-
0031714313
-
Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes
-
Blazquez C., Sanchez C., Velasco G. and Guzman M. (1998) Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J. Neurochem. 71, 1597–1606.
-
(1998)
J. Neurochem.
, vol.71
, pp. 1597-1606
-
-
Blazquez, C.1
Sanchez, C.2
Velasco, G.3
Guzman, M.4
-
6
-
-
84923873562
-
Glucose metabolism and astrocyte-neuron interactions in the neonatal brain
-
Brekke E., Morken T. S. and Sonnewald U. (2015) Glucose metabolism and astrocyte-neuron interactions in the neonatal brain. Neurochem. Int. 82, 33–41.
-
(2015)
Neurochem. Int.
, vol.82
, pp. 33-41
-
-
Brekke, E.1
Morken, T.S.2
Sonnewald, U.3
-
7
-
-
0020355987
-
Substrate utilization and brain development
-
Cremer J. E. (1982) Substrate utilization and brain development. J. Cereb. Blood Flow Metab. 2, 394–407.
-
(1982)
J. Cereb. Blood Flow Metab.
, vol.2
, pp. 394-407
-
-
Cremer, J.E.1
-
8
-
-
0037707488
-
Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy
-
Ebert D., Haller R. G. and Walton M. E. (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 23, 5928–5935.
-
(2003)
J. Neurosci.
, vol.23
, pp. 5928-5935
-
-
Ebert, D.1
Haller, R.G.2
Walton, M.E.3
-
9
-
-
0023470792
-
Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture
-
Edmond J., Robbins R. A., Bergstrom J. D., Cole R. A. and de Vellis J. (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J. Neurosci. Res. 18, 551–561.
-
(1987)
J. Neurosci. Res.
, vol.18
, pp. 551-561
-
-
Edmond, J.1
Robbins, R.A.2
Bergstrom, J.D.3
Cole, R.A.4
de Vellis, J.5
-
10
-
-
84876472084
-
Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity
-
Ellis J. M., Wong G. W. and Wolfgang M. J. (2013) Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity. Mol. Cell. Biol. 33, 1869–1882.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 1869-1882
-
-
Ellis, J.M.1
Wong, G.W.2
Wolfgang, M.J.3
-
11
-
-
34447128136
-
Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults
-
Escartin C., Pierre K., Colin A., Brouillet E., Delzescaux T., Guillermier M., Dhenain M., Déglon N., Hantraye P., Pellerin L. and Bonvento G. (2007) Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults. J. Neurosci. USA 27, 7094-7104.
-
(2007)
J. Neurosci. USA
, vol.27
, pp. 7094-7104
-
-
Escartin, C.1
Pierre, K.2
Colin, A.3
Brouillet, E.4
Delzescaux, T.5
Guillermier, M.6
Dhenain, M.7
Déglon, N.8
Hantraye, P.9
Pellerin, L.10
Bonvento, G.11
-
12
-
-
84878220173
-
Relationship between central and peripheral fatty acids in humans
-
Guest J., Garg M., Bilgin A. and Grant R. (2013) Relationship between central and peripheral fatty acids in humans. Lipids Health Dis. 12, 79–511X-12-79.
-
(2013)
Lipids Health Dis.
, vol.12
, pp. 79-511X-12-79
-
-
Guest, J.1
Garg, M.2
Bilgin, A.3
Grant, R.4
-
13
-
-
0018923260
-
The pentose phosphate pathway in brain during development
-
Hakim A. M., Moss G. and Scuderi D. (1980) The pentose phosphate pathway in brain during development. Biol. Neonate 37, 15–21.
-
(1980)
Biol. Neonate
, vol.37
, pp. 15-21
-
-
Hakim, A.M.1
Moss, G.2
Scuderi, D.3
-
14
-
-
84907892277
-
The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase
-
Inloes J. M., Hsu K. L., Dix M. M., Viader A., Masuda K., Takei T., Wood M. R. and Cravatt B. F. (2014) The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase. Proc. Natl Acad. Sci. USA 111, 14924–14929.
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 14924-14929
-
-
Inloes, J.M.1
Hsu, K.L.2
Dix, M.M.3
Viader, A.4
Masuda, K.5
Takei, T.6
Wood, M.R.7
Cravatt, B.F.8
-
15
-
-
84961288408
-
Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay
-
Kamat S. S., Camara K., Parsons W. H., Chen D. H., Dix M. M., Bird T. D., Howell A. R. and Cravatt B. F. (2015) Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat. Chem. Biol. 11, 164–171.
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 164-171
-
-
Kamat, S.S.1
Camara, K.2
Parsons, W.H.3
Chen, D.H.4
Dix, M.M.5
Bird, T.D.6
Howell, A.R.7
Cravatt, B.F.8
-
16
-
-
0003149590
-
The general metabolism of the brain in vivo
-
in, Richter D., ed), London, Pergamon Press
-
Kety S. S. (1957) The general metabolism of the brain in vivo, in Metabolism of the Nervous System (Richter D., ed), pp. 221. London, Pergamon Press.
-
(1957)
Metabolism of the Nervous System
, pp. 221
-
-
Kety, S.S.1
-
17
-
-
79960402453
-
Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex
-
Lee K., Kerner J. and Hoppel C. L. (2011) Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J. Biol. Chem. 286, 25655–25662.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 25655-25662
-
-
Lee, K.1
Kerner, J.2
Hoppel, C.L.3
-
18
-
-
84928574539
-
ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous system
-
Lee H. C., Simon G. M. and Cravatt B. F. (2015) ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous system. Biochemistry 54, 2539–2549.
-
(2015)
Biochemistry
, vol.54
, pp. 2539-2549
-
-
Lee, H.C.1
Simon, G.M.2
Cravatt, B.F.3
-
19
-
-
85008406081
-
Hepatic fatty acid oxidation restrains systemic catabolism during starvation
-
Lee J., Choi J., Scafidi S. and Wolfgang M. J. (2016) Hepatic fatty acid oxidation restrains systemic catabolism during starvation. Cell Rep. 16, 201–212.
-
(2016)
Cell Rep.
, vol.16
, pp. 201-212
-
-
Lee, J.1
Choi, J.2
Scafidi, S.3
Wolfgang, M.J.4
-
20
-
-
84874817589
-
Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1alpha complex
-
Lim J. H., Gerhart-Hines Z., Dominy J. E., Lee Y., Kim S., Tabata M., Xiang Y. K. and Puigserver P. (2013) Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1alpha complex. J. Biol. Chem. 288, 7117–7126.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 7117-7126
-
-
Lim, J.H.1
Gerhart-Hines, Z.2
Dominy, J.E.3
Lee, Y.4
Kim, S.5
Tabata, M.6
Xiang, Y.K.7
Puigserver, P.8
-
21
-
-
85014026644
-
Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells
-
Lin H., Patel S., Affleck V. S., Wilson I., Turnbull D. M., Joshi A. R., Maxwell R. and Stoll E. A. (2017) Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro. Oncol. 19, 43–54.
-
(2017)
Neuro. Oncol.
, vol.19
, pp. 43-54
-
-
Lin, H.1
Patel, S.2
Affleck, V.S.3
Wilson, I.4
Turnbull, D.M.5
Joshi, A.R.6
Maxwell, R.7
Stoll, E.A.8
-
22
-
-
80054856731
-
Metabolomics annotates ABHD3 as a physiologic regulator of medium-chain phospholipids
-
Long J. Z., Cisar J. S., Milliken D., Niessen S., Wang C., Trauger S. A., Siuzdak G. and Cravatt B. F. (2011) Metabolomics annotates ABHD3 as a physiologic regulator of medium-chain phospholipids. Nat. Chem. Biol. 7, 763–765.
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 763-765
-
-
Long, J.Z.1
Cisar, J.S.2
Milliken, D.3
Niessen, S.4
Wang, C.5
Trauger, S.A.6
Siuzdak, G.7
Cravatt, B.F.8
-
23
-
-
85024377720
-
Fatty acid metabolism
-
in, Richter D., ed), Pergamon Press, London
-
Lynen F. (1957) Fatty acid metabolism, in Metabolism of the Nervous System (Richter D., ed), pp. 381. Pergamon Press, London.
-
(1957)
Metabolism of the Nervous System
, pp. 381
-
-
Lynen, F.1
-
24
-
-
0029844532
-
Entry of polyunsaturated fatty acids into the brain: evidence that high-density lipoprotein-induced methylation of phosphatidylethanolamine and phospholipase A2 are involved
-
Magret V., Elkhalil L., Nazih-Sanderson F., Martin F., Bourre J. M., Fruchart J. C. and Delbart C. (1996) Entry of polyunsaturated fatty acids into the brain: evidence that high-density lipoprotein-induced methylation of phosphatidylethanolamine and phospholipase A2 are involved. Biochem. J. 316(Pt 3), 805–811.
-
(1996)
Biochem. J.
, vol.316
, pp. 805-811
-
-
Magret, V.1
Elkhalil, L.2
Nazih-Sanderson, F.3
Martin, F.4
Bourre, J.M.5
Fruchart, J.C.6
Delbart, C.7
-
25
-
-
84949323750
-
Metabolic alterations in developing brain after injury: knowns and unknowns
-
McKenna M. C., Scafidi S. and Robertson C. L. (2015) Metabolic alterations in developing brain after injury: knowns and unknowns. Neurochem. Res. 40, 2527–2543.
-
(2015)
Neurochem. Res.
, vol.40
, pp. 2527-2543
-
-
McKenna, M.C.1
Scafidi, S.2
Robertson, C.L.3
-
26
-
-
84901260638
-
Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid
-
Nguyen L. N., Ma D., Shui G., Wong P., Cazenave-Gassiot A., Zhang X., Wenk M. R., Goh E. L. and Silver D. L. (2014) Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503–506.
-
(2014)
Nature
, vol.509
, pp. 503-506
-
-
Nguyen, L.N.1
Ma, D.2
Shui, G.3
Wong, P.4
Cazenave-Gassiot, A.5
Zhang, X.6
Wenk, M.R.7
Goh, E.L.8
Silver, D.L.9
-
27
-
-
0013804809
-
Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin
-
O'Brien J. S. and Sampson E. L. (1965a) Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6, 545–551.
-
(1965)
J. Lipid Res.
, vol.6
, pp. 545-551
-
-
O'Brien, J.S.1
Sampson, E.L.2
-
28
-
-
0013805953
-
Lipid composition of the normal human brain: gray matter, white matter, and myelin
-
O'Brien J. S. and Sampson E. L. (1965b) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J. Lipid Res. 6, 537–544.
-
(1965)
J. Lipid Res.
, vol.6
, pp. 537-544
-
-
O'Brien, J.S.1
Sampson, E.L.2
-
29
-
-
0014139879
-
Brain metabolism during fasting
-
Owen O. E., Morgan A. P., Kemp H. G., Sullivan J. M., Herrera M. G. and Cahill G. F. Jr (1967) Brain metabolism during fasting. J. Clin. Invest. 46, 1589–1595.
-
(1967)
J. Clin. Invest.
, vol.46
, pp. 1589-1595
-
-
Owen, O.E.1
Morgan, A.P.2
Kemp, H.G.3
Sullivan, J.M.4
Herrera, M.G.5
Cahill, G.F.6
-
30
-
-
0030854715
-
Cellular energy utilization and molecular origin of standard metabolic rate in mammals
-
Rolfe D. F. and Brown G. C. (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758.
-
(1997)
Physiol. Rev.
, vol.77
, pp. 731-758
-
-
Rolfe, D.F.1
Brown, G.C.2
-
31
-
-
84913083472
-
Lipid metabolism
-
in, Richter D., ed), Pergamon Press, London
-
Rossiter R. J. (1957) Lipid metabolism, in Metabolism of the Nervous System (Richter D., ed), pp. 355. Pergamon Press, London.
-
(1957)
Metabolism of the Nervous System
, pp. 355
-
-
Rossiter, R.J.1
-
32
-
-
84885023188
-
Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain
-
Schonfeld P. and Reiser G. (2013) Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow Metab. 33, 1493–1499.
-
(2013)
J. Cereb. Blood Flow Metab.
, vol.33
, pp. 1493-1499
-
-
Schonfeld, P.1
Reiser, G.2
-
33
-
-
84922551462
-
Glial beta-oxidation regulates Drosophila energy metabolism
-
Schulz J. G., Laranjeira A., Van Huffel L., Gartner A., Vilain S., Bastianen J., Van Veldhoven P. P. and Dotti C. G. (2015) Glial beta-oxidation regulates Drosophila energy metabolism. Sci. Rep. 5, 7805.
-
(2015)
Sci. Rep.
, vol.5
, pp. 7805
-
-
Schulz, J.G.1
Laranjeira, A.2
Van Huffel, L.3
Gartner, A.4
Vilain, S.5
Bastianen, J.6
Van Veldhoven, P.P.7
Dotti, C.G.8
-
34
-
-
84860168205
-
Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis
-
Shriver L. P. and Manchester M. (2011) Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci. Rep. England 1, 79.
-
(2011)
Sci. Rep. England
, vol.1
, pp. 79
-
-
Shriver, L.P.1
Manchester, M.2
-
35
-
-
0023930956
-
Fatty acid transport through the blood-brain barrier
-
Spector R. (1988) Fatty acid transport through the blood-brain barrier. J. Neurochem. 50, 639–643.
-
(1988)
J. Neurochem.
, vol.50
, pp. 639-643
-
-
Spector, R.1
-
36
-
-
84931339337
-
Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity
-
Stoll E. A., Makin R., Sweet I. R., Trevelyan A. J., Miwa S., Horner P. J. and Turnbull D. M. (2015) Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells 33, 2306–2319.
-
(2015)
Stem Cells
, vol.33
, pp. 2306-2319
-
-
Stoll, E.A.1
Makin, R.2
Sweet, I.R.3
Trevelyan, A.J.4
Miwa, S.5
Horner, P.J.6
Turnbull, D.M.7
-
37
-
-
15844426657
-
Activation and oxidation of long chain fatty acids by rat brain
-
Vignais P. M., Gallagher C. H. and Zabin I. (1958) Activation and oxidation of long chain fatty acids by rat brain. J. Neurochem. 2, 283–287.
-
(1958)
J. Neurochem.
, vol.2
, pp. 283-287
-
-
Vignais, P.M.1
Gallagher, C.H.2
Zabin, I.3
-
38
-
-
33646576512
-
The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis
-
Wolfgang M. J., Kurama T., Dai Y., Suwa A., Asaumi M., Matsumoto S., Cha S. H., Shimokawa T. and Lane M. D. (2006) The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc. Natl Acad. Sci. USA 103, 7282–7287.
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 7282-7287
-
-
Wolfgang, M.J.1
Kurama, T.2
Dai, Y.3
Suwa, A.4
Asaumi, M.5
Matsumoto, S.6
Cha, S.H.7
Shimokawa, T.8
Lane, M.D.9
-
39
-
-
42549146972
-
Brain-specific carnitine palmitoyl-transferase-1c: role in CNS fatty acid metabolism, food intake, and body weight
-
Wolfgang M. J., Cha S. H., Millington D. S., Cline G., Shulman G. I., Suwa A., Asaumi M., Kurama T., Shimokawa T. and Lane M. D. (2008) Brain-specific carnitine palmitoyl-transferase-1c: role in CNS fatty acid metabolism, food intake, and body weight. J. Neurochem. 105, 1550–1559.
-
(2008)
J. Neurochem.
, vol.105
, pp. 1550-1559
-
-
Wolfgang, M.J.1
Cha, S.H.2
Millington, D.S.3
Cline, G.4
Shulman, G.I.5
Suwa, A.6
Asaumi, M.7
Kurama, T.8
Shimokawa, T.9
Lane, M.D.10
-
40
-
-
84958026024
-
Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism
-
Xie Z., Jones A., Deeney J. T., Hur S. K. and Bankaitis V. A. (2016) Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism. Cell Rep. 14, 991–999.
-
(2016)
Cell Rep.
, vol.14
, pp. 991-999
-
-
Xie, Z.1
Jones, A.2
Deeney, J.T.3
Hur, S.K.4
Bankaitis, V.A.5
|