메뉴 건너뛰기




Volumn 142, Issue 3, 2017, Pages 407-419

Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain

Author keywords

Carnitine palmitoyltransferase; development; fatty acid oxidation; mitochondria

Indexed keywords

ACYL COENZYME A; ACYLCARNITINE; CARNITINE PALMITOYLTRANSFERASE; ETOMOXIR; FATTY ACID; GLUCOSE; LONG CHAIN ACYL COENZYME A DEHYDROGENASE; RNA; CARNITINE; OLEIC ACID;

EID: 85023201751     PISSN: 00223042     EISSN: 14714159     Source Type: Journal    
DOI: 10.1111/jnc.14072     Document Type: Article
Times cited : (66)

References (40)
  • 1
    • 0026020414 scopus 로고
    • Fatty acid oxidation and ketogenesis by astrocytes in primary culture
    • Auestad N., Korsak R. A., Morrow J. W. and Edmond J. (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J. Neurochem. 56, 1376–1386.
    • (1991) J. Neurochem. , vol.56 , pp. 1376-1386
    • Auestad, N.1    Korsak, R.A.2    Morrow, J.W.3    Edmond, J.4
  • 3
    • 0031692458 scopus 로고    scopus 로고
    • Astrocytes are mainly responsible for the polyunsaturated fatty acid enrichment in blood-brain barrier endothelial cells in vitro
    • Bernoud N., Fenart L., Benistant C., Pageaux J. F., Dehouck M. P., Moliere P., Lagarde M., Cecchelli R. and Lecerf J. (1998) Astrocytes are mainly responsible for the polyunsaturated fatty acid enrichment in blood-brain barrier endothelial cells in vitro. J. Lipid Res. 39, 1816–1824.
    • (1998) J. Lipid Res. , vol.39 , pp. 1816-1824
    • Bernoud, N.1    Fenart, L.2    Benistant, C.3    Pageaux, J.F.4    Dehouck, M.P.5    Moliere, P.6    Lagarde, M.7    Cecchelli, R.8    Lecerf, J.9
  • 4
    • 37149013708 scopus 로고    scopus 로고
    • A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol
    • Blankman J. L., Simon G. M. and Cravatt B. F. (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14, 1347–1356.
    • (2007) Chem. Biol. , vol.14 , pp. 1347-1356
    • Blankman, J.L.1    Simon, G.M.2    Cravatt, B.F.3
  • 5
    • 0031714313 scopus 로고    scopus 로고
    • Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes
    • Blazquez C., Sanchez C., Velasco G. and Guzman M. (1998) Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J. Neurochem. 71, 1597–1606.
    • (1998) J. Neurochem. , vol.71 , pp. 1597-1606
    • Blazquez, C.1    Sanchez, C.2    Velasco, G.3    Guzman, M.4
  • 6
    • 84923873562 scopus 로고    scopus 로고
    • Glucose metabolism and astrocyte-neuron interactions in the neonatal brain
    • Brekke E., Morken T. S. and Sonnewald U. (2015) Glucose metabolism and astrocyte-neuron interactions in the neonatal brain. Neurochem. Int. 82, 33–41.
    • (2015) Neurochem. Int. , vol.82 , pp. 33-41
    • Brekke, E.1    Morken, T.S.2    Sonnewald, U.3
  • 7
    • 0020355987 scopus 로고
    • Substrate utilization and brain development
    • Cremer J. E. (1982) Substrate utilization and brain development. J. Cereb. Blood Flow Metab. 2, 394–407.
    • (1982) J. Cereb. Blood Flow Metab. , vol.2 , pp. 394-407
    • Cremer, J.E.1
  • 8
    • 0037707488 scopus 로고    scopus 로고
    • Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy
    • Ebert D., Haller R. G. and Walton M. E. (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 23, 5928–5935.
    • (2003) J. Neurosci. , vol.23 , pp. 5928-5935
    • Ebert, D.1    Haller, R.G.2    Walton, M.E.3
  • 9
    • 0023470792 scopus 로고
    • Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture
    • Edmond J., Robbins R. A., Bergstrom J. D., Cole R. A. and de Vellis J. (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J. Neurosci. Res. 18, 551–561.
    • (1987) J. Neurosci. Res. , vol.18 , pp. 551-561
    • Edmond, J.1    Robbins, R.A.2    Bergstrom, J.D.3    Cole, R.A.4    de Vellis, J.5
  • 10
    • 84876472084 scopus 로고    scopus 로고
    • Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity
    • Ellis J. M., Wong G. W. and Wolfgang M. J. (2013) Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity. Mol. Cell. Biol. 33, 1869–1882.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 1869-1882
    • Ellis, J.M.1    Wong, G.W.2    Wolfgang, M.J.3
  • 12
    • 84878220173 scopus 로고    scopus 로고
    • Relationship between central and peripheral fatty acids in humans
    • Guest J., Garg M., Bilgin A. and Grant R. (2013) Relationship between central and peripheral fatty acids in humans. Lipids Health Dis. 12, 79–511X-12-79.
    • (2013) Lipids Health Dis. , vol.12 , pp. 79-511X-12-79
    • Guest, J.1    Garg, M.2    Bilgin, A.3    Grant, R.4
  • 13
    • 0018923260 scopus 로고
    • The pentose phosphate pathway in brain during development
    • Hakim A. M., Moss G. and Scuderi D. (1980) The pentose phosphate pathway in brain during development. Biol. Neonate 37, 15–21.
    • (1980) Biol. Neonate , vol.37 , pp. 15-21
    • Hakim, A.M.1    Moss, G.2    Scuderi, D.3
  • 16
    • 0003149590 scopus 로고
    • The general metabolism of the brain in vivo
    • in, Richter D., ed), London, Pergamon Press
    • Kety S. S. (1957) The general metabolism of the brain in vivo, in Metabolism of the Nervous System (Richter D., ed), pp. 221. London, Pergamon Press.
    • (1957) Metabolism of the Nervous System , pp. 221
    • Kety, S.S.1
  • 17
    • 79960402453 scopus 로고    scopus 로고
    • Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex
    • Lee K., Kerner J. and Hoppel C. L. (2011) Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J. Biol. Chem. 286, 25655–25662.
    • (2011) J. Biol. Chem. , vol.286 , pp. 25655-25662
    • Lee, K.1    Kerner, J.2    Hoppel, C.L.3
  • 18
    • 84928574539 scopus 로고    scopus 로고
    • ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous system
    • Lee H. C., Simon G. M. and Cravatt B. F. (2015) ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous system. Biochemistry 54, 2539–2549.
    • (2015) Biochemistry , vol.54 , pp. 2539-2549
    • Lee, H.C.1    Simon, G.M.2    Cravatt, B.F.3
  • 19
    • 85008406081 scopus 로고    scopus 로고
    • Hepatic fatty acid oxidation restrains systemic catabolism during starvation
    • Lee J., Choi J., Scafidi S. and Wolfgang M. J. (2016) Hepatic fatty acid oxidation restrains systemic catabolism during starvation. Cell Rep. 16, 201–212.
    • (2016) Cell Rep. , vol.16 , pp. 201-212
    • Lee, J.1    Choi, J.2    Scafidi, S.3    Wolfgang, M.J.4
  • 20
    • 84874817589 scopus 로고    scopus 로고
    • Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1alpha complex
    • Lim J. H., Gerhart-Hines Z., Dominy J. E., Lee Y., Kim S., Tabata M., Xiang Y. K. and Puigserver P. (2013) Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1alpha complex. J. Biol. Chem. 288, 7117–7126.
    • (2013) J. Biol. Chem. , vol.288 , pp. 7117-7126
    • Lim, J.H.1    Gerhart-Hines, Z.2    Dominy, J.E.3    Lee, Y.4    Kim, S.5    Tabata, M.6    Xiang, Y.K.7    Puigserver, P.8
  • 23
    • 85024377720 scopus 로고
    • Fatty acid metabolism
    • in, Richter D., ed), Pergamon Press, London
    • Lynen F. (1957) Fatty acid metabolism, in Metabolism of the Nervous System (Richter D., ed), pp. 381. Pergamon Press, London.
    • (1957) Metabolism of the Nervous System , pp. 381
    • Lynen, F.1
  • 24
    • 0029844532 scopus 로고    scopus 로고
    • Entry of polyunsaturated fatty acids into the brain: evidence that high-density lipoprotein-induced methylation of phosphatidylethanolamine and phospholipase A2 are involved
    • Magret V., Elkhalil L., Nazih-Sanderson F., Martin F., Bourre J. M., Fruchart J. C. and Delbart C. (1996) Entry of polyunsaturated fatty acids into the brain: evidence that high-density lipoprotein-induced methylation of phosphatidylethanolamine and phospholipase A2 are involved. Biochem. J. 316(Pt 3), 805–811.
    • (1996) Biochem. J. , vol.316 , pp. 805-811
    • Magret, V.1    Elkhalil, L.2    Nazih-Sanderson, F.3    Martin, F.4    Bourre, J.M.5    Fruchart, J.C.6    Delbart, C.7
  • 25
    • 84949323750 scopus 로고    scopus 로고
    • Metabolic alterations in developing brain after injury: knowns and unknowns
    • McKenna M. C., Scafidi S. and Robertson C. L. (2015) Metabolic alterations in developing brain after injury: knowns and unknowns. Neurochem. Res. 40, 2527–2543.
    • (2015) Neurochem. Res. , vol.40 , pp. 2527-2543
    • McKenna, M.C.1    Scafidi, S.2    Robertson, C.L.3
  • 27
    • 0013804809 scopus 로고
    • Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin
    • O'Brien J. S. and Sampson E. L. (1965a) Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6, 545–551.
    • (1965) J. Lipid Res. , vol.6 , pp. 545-551
    • O'Brien, J.S.1    Sampson, E.L.2
  • 28
    • 0013805953 scopus 로고
    • Lipid composition of the normal human brain: gray matter, white matter, and myelin
    • O'Brien J. S. and Sampson E. L. (1965b) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J. Lipid Res. 6, 537–544.
    • (1965) J. Lipid Res. , vol.6 , pp. 537-544
    • O'Brien, J.S.1    Sampson, E.L.2
  • 30
    • 0030854715 scopus 로고    scopus 로고
    • Cellular energy utilization and molecular origin of standard metabolic rate in mammals
    • Rolfe D. F. and Brown G. C. (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758.
    • (1997) Physiol. Rev. , vol.77 , pp. 731-758
    • Rolfe, D.F.1    Brown, G.C.2
  • 31
    • 84913083472 scopus 로고
    • Lipid metabolism
    • in, Richter D., ed), Pergamon Press, London
    • Rossiter R. J. (1957) Lipid metabolism, in Metabolism of the Nervous System (Richter D., ed), pp. 355. Pergamon Press, London.
    • (1957) Metabolism of the Nervous System , pp. 355
    • Rossiter, R.J.1
  • 32
    • 84885023188 scopus 로고    scopus 로고
    • Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain
    • Schonfeld P. and Reiser G. (2013) Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow Metab. 33, 1493–1499.
    • (2013) J. Cereb. Blood Flow Metab. , vol.33 , pp. 1493-1499
    • Schonfeld, P.1    Reiser, G.2
  • 34
    • 84860168205 scopus 로고    scopus 로고
    • Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis
    • Shriver L. P. and Manchester M. (2011) Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci. Rep. England 1, 79.
    • (2011) Sci. Rep. England , vol.1 , pp. 79
    • Shriver, L.P.1    Manchester, M.2
  • 35
    • 0023930956 scopus 로고
    • Fatty acid transport through the blood-brain barrier
    • Spector R. (1988) Fatty acid transport through the blood-brain barrier. J. Neurochem. 50, 639–643.
    • (1988) J. Neurochem. , vol.50 , pp. 639-643
    • Spector, R.1
  • 36
    • 84931339337 scopus 로고    scopus 로고
    • Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity
    • Stoll E. A., Makin R., Sweet I. R., Trevelyan A. J., Miwa S., Horner P. J. and Turnbull D. M. (2015) Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells 33, 2306–2319.
    • (2015) Stem Cells , vol.33 , pp. 2306-2319
    • Stoll, E.A.1    Makin, R.2    Sweet, I.R.3    Trevelyan, A.J.4    Miwa, S.5    Horner, P.J.6    Turnbull, D.M.7
  • 37
    • 15844426657 scopus 로고
    • Activation and oxidation of long chain fatty acids by rat brain
    • Vignais P. M., Gallagher C. H. and Zabin I. (1958) Activation and oxidation of long chain fatty acids by rat brain. J. Neurochem. 2, 283–287.
    • (1958) J. Neurochem. , vol.2 , pp. 283-287
    • Vignais, P.M.1    Gallagher, C.H.2    Zabin, I.3
  • 40
    • 84958026024 scopus 로고    scopus 로고
    • Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism
    • Xie Z., Jones A., Deeney J. T., Hur S. K. and Bankaitis V. A. (2016) Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism. Cell Rep. 14, 991–999.
    • (2016) Cell Rep. , vol.14 , pp. 991-999
    • Xie, Z.1    Jones, A.2    Deeney, J.T.3    Hur, S.K.4    Bankaitis, V.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.