메뉴 건너뛰기




Volumn Part F129685, Issue , 2017, Pages 837-846

Anarchists, unite: Practical entropy approximation for distributed streams

Author keywords

Data mining; Distributed streams; Entropy estimation

Indexed keywords

ADAPTIVE ALGORITHMS; BANDWIDTH; ENTROPY; ERROR ANALYSIS; SENSOR NODES; SIGNAL PROCESSING; WIRELESS SENSOR NETWORKS;

EID: 85023172997     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3097983.3098092     Document Type: Conference Paper
Times cited : (14)

References (50)
  • 2
    • 0742306773 scopus 로고    scopus 로고
    • Entropy of EEG during anaesthetic induction: A comparative study with propofol or nitrous oxide as sole agent
    • (2004)
    • R. E. Anderson. 2004. Entropy of EEG during anaesthetic induction: a comparative study with propofol or nitrous oxide as sole agent. British Journal of Anaesthesia 92, 2 (2004), 167-170.
    • (2004) British Journal of Anaesthesia , vol.92 , Issue.2 , pp. 167-170
    • Anderson, R.E.1
  • 6
    • 4243997063 scopus 로고    scopus 로고
    • Permutation entropy: A natural complexity measure for time series
    • (2002)
    • Christoph Bandt and Bernd Pompe. 2002. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 88, 17 (2002), 174102.
    • (2002) Phys. Rev. Lett. , vol.88 , Issue.17 , pp. 174102
    • Bandt, C.1    Pompe, B.2
  • 7
    • 84930363113 scopus 로고    scopus 로고
    • An entropy-based network anomaly detection method
    • (2015)
    • Przemyslaw Berezinski, Bartosz Jasiul, and Marcin Szpyrka. 2015. An Entropy-Based Network Anomaly Detection Method. Entropy 17, 4 (2015), 2367-2408.
    • (2015) Entropy , vol.17 , Issue.4 , pp. 2367-2408
    • Berezinski, P.1    Jasiul, B.2    Szpyrka, M.3
  • 9
    • 33745713031 scopus 로고    scopus 로고
    • Depth of anaesthesia monitoring: What's available, what's validated and what's next?
    • (2006)
    • J. Bruhn. 2006. Depth of anaesthesia monitoring: what's available, what's validated and what's next? British Journal of Anaesthesia 97, 1 (2006), 85-94.
    • (2006) British Journal of Anaesthesia , vol.97 , Issue.1 , pp. 85-94
    • Bruhn, J.1
  • 13
    • 84954205022 scopus 로고    scopus 로고
    • A simple sketching algorithm for entropy estimation over streaming data
    • Peter Clifford and Ioana Cosma. 2013. A simple sketching algorithm for entropy estimation over streaming data. In Proc. AISTATS '13, Vol. 31.
    • (2013) Proc. AISTATS '13 , vol.31
    • Clifford, P.1    Cosma, I.2
  • 14
    • 84880686322 scopus 로고    scopus 로고
    • The continuous distributed monitoring model
    • (2013)
    • Graham Cormode. 2013. The Continuous Distributed Monitoring Model. SIGMOD Rec. 42, 1 (2013), 5-14.
    • (2013) SIGMOD Rec. , vol.42 , Issue.1 , pp. 5-14
    • Cormode, G.1
  • 15
    • 84860560397 scopus 로고    scopus 로고
    • Continuous sampling from distributed streams
    • (2012)
    • Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. 2012. Continuous Sampling from Distributed Streams. J. ACM 59, 2, Article 10 (2012), 10:1-10:25 pages.
    • (2012) J. ACM , vol.59 , Issue.2 , pp. 101-1025
    • Cormode, G.1    Muthukrishnan, S.2    Yi, K.3    Zhang, Q.4
  • 16
    • 84979920226 scopus 로고    scopus 로고
    • CVXPY: A python-embedded modeling language for convex optimization
    • (2016)
    • Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-Embedded Modeling Language for Convex Optimization. JMLR 17, 83 (2016), 1-5.
    • (2016) JMLR , vol.17 , Issue.83 , pp. 1-5
    • Diamond, S.1    Boyd, S.2
  • 17
    • 9444236785 scopus 로고    scopus 로고
    • Spectral entropy and bispectral index as measures of the electroencephalographic effects of sevoflurane
    • (2004)
    • Richard Klaus Ellerkmann, Vidal-Markus Liermann, Thorsten Michael Alves, Ingobert Wenningmann, Sascha Kreuer, Wolfram Wilhelm, Heiko Roepcke, Andreas Hoeft, and Jörgen Bruhn. 2004. Spectral Entropy and Bispectral Index as Measures of the Electroencephalographic Effects of Sevoflurane. Anesthesiology 101, 6 (2004), 1275-1282.
    • (2004) Anesthesiology , vol.101 , Issue.6 , pp. 1275-1282
    • Ellerkmann, R.K.1    Liermann, V.-M.2    Alves, T.M.3    Wenningmann, I.4    Kreuer, S.5    Wilhelm, W.6    Roepcke, H.7    Hoeft, A.8    Bruhn, J.9
  • 20
    • 84906668980 scopus 로고    scopus 로고
    • Communication-efficient distributed variance monitoring and outlier detection for multivariate time series
    • Moshe Gabel, Daniel Keren, and Assaf Schuster. 2014. Communication-efficient Distributed Variance Monitoring and Outlier Detection for Multivariate Time Series. In Proc. IPDPS '14.
    • (2014) Proc. IPDPS '14
    • Gabel, M.1    Keren, D.2    Schuster, A.3
  • 21
    • 84954148341 scopus 로고    scopus 로고
    • Monitoring least squares models of distributed streams
    • Moshe Gabel, Daniel Keren, and Assaf Schuster. 2015. Monitoring Least Squares Models of Distributed Streams. In Proc. KDD '15.
    • (2015) Proc. KDD '15
    • Gabel, M.1    Keren, D.2    Schuster, A.3
  • 22
    • 84903157026 scopus 로고    scopus 로고
    • An empirical comparison of botnet detection methods
    • S. García, M. Grill, J. Stiborek, and A. Zunino. 2014. An Empirical Comparison of Botnet Detection Methods. Computers & Security 45 (2014), 100-123.
    • (2014) Computers & Security , vol.45 , Issue.2014 , pp. 100-123
    • García, S.1    Grill, M.2    Stiborek, J.3    Zunino, A.4
  • 23
    • 84891129255 scopus 로고    scopus 로고
    • Sketch-based geometric monitoring of distributed stream queries
    • (2013)
    • Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. 2013. Sketch-based Geometric Monitoring of Distributed Stream Queries. Proc. VLDB Endow. 6, 10 (2013), 937-948.
    • (2013) Proc. VLDB Endow. , vol.6 , Issue.10 , pp. 937-948
    • Garofalakis, M.1    Keren, D.2    Samoladas, V.3
  • 25
    • 84901496328 scopus 로고    scopus 로고
    • Distributed geometric query monitoring using prediction models
    • (2014)
    • Nikos Giatrakos, Antonios Deligiannakis, Minos Garofalakis, Izchak Sharfman, and Assaf Schuster. 2014. Distributed Geometric Query Monitoring Using Prediction Models. TODS 39, 2 (2014), 16:1-16:42.
    • (2014) TODS , vol.39 , Issue.2 , pp. 161-1642
    • Giatrakos, N.1    Deligiannakis, A.2    Garofalakis, M.3    Sharfman, I.4    Schuster, A.5
  • 26
    • 84892965397 scopus 로고    scopus 로고
    • In-network approximate computation of outliers with quality guarantees
    • (2013)
    • Nikos Giatrakos, Yannis Kotidis, Antonios Deligiannakis, Vasilis Vassalos, and Yannis Theodoridis. 2013. In-network Approximate Computation of Outliers with Quality Guarantees. Inf. Syst. 38, 8 (2013), 1285-1308.
    • (2013) Inf. Syst. , vol.38 , Issue.8 , pp. 1285-1308
    • Giatrakos, N.1    Kotidis, Y.2    Deligiannakis, A.3    Vassalos, V.4    Theodoridis, Y.5
  • 27
    • 57949089925 scopus 로고    scopus 로고
    • Sketching and streaming entropy via approximation theory
    • Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. 2008. Sketching and Streaming Entropy via Approximation Theory. In Proc. FOCS '08.
    • (2008) Proc. FOCS '08
    • Harvey, N.J.A.1    Nelson, J.2    Onak, K.3
  • 29
    • 33746851190 scopus 로고    scopus 로고
    • Stable distributions, pseudorandom generators, embeddings, and data stream computation
    • (2006)
    • Piotr Indyk. 2006. Stable Distributions, Pseudorandom Generators, Embeddings, and Data Stream Computation. J. ACM 53, 3 (2006), 307-323.
    • (2006) J. ACM , vol.53 , Issue.3 , pp. 307-323
    • Indyk, P.1
  • 30
    • 84970891353 scopus 로고    scopus 로고
    • Communication-efficient distributed online prediction by dynamic model synchronization
    • Michael Kamp, Mario Boley, Daniel Keren, Assaf Schuster, and Izchak Sharfman. 2014. Communication-Efficient Distributed Online Prediction by Dynamic Model Synchronization. In Proc. ECML PKDD '14.
    • (2014) Proc. ECML PKDD '14
    • Kamp, M.1    Boley, M.2    Keren, D.3    Schuster, A.4    Sharfman, I.5
  • 33
    • 84863491341 scopus 로고    scopus 로고
    • Shape sensitive geometric monitoring
    • (2012)
    • Daniel Keren, Izchak Sharfman, Assaf Schuster, and Avishay Livne. 2012. Shape Sensitive Geometric Monitoring. IEEE TKDE 24, 8 (2012), 1520-1535.
    • (2012) IEEE TKDE , vol.24 , Issue.8 , pp. 1520-1535
    • Keren, D.1    Sharfman, I.2    Schuster, A.3    Livne, A.4
  • 34
    • 85023201401 scopus 로고    scopus 로고
    • One for all and all for one: Simultaneous approximation of multiple functions over distributed streams
    • Arnon Lazerson, Moshe Gabel, Daniel Keren, and Assaf Schuster. 2017. One for All and All for One: Simultaneous Approximation of Multiple Functions over Distributed Streams. In Proc. DEBS '17.
    • (2017) Proc. DEBS '17
    • Lazerson, A.1    Gabel, M.2    Keren, D.3    Schuster, A.4
  • 35
    • 84985001790 scopus 로고    scopus 로고
    • Lightweight monitoring of distributed streams
    • Arnon Lazerson, Daniel Keren, and Assaf Schuster. 2016. Lightweight Monitoring of Distributed Streams. In Proc. KDD '16.
    • (2016) Proc. KDD '16
    • Lazerson, A.1    Keren, D.2    Schuster, A.3
  • 37
    • 3142781787 scopus 로고    scopus 로고
    • Data streams: Algorithms and applications
    • S. Muthukrishnan. 2003. Data Streams: Algorithms and Applications. In Proc. SODA '03.
    • (2003) Proc. SODA '03
    • Muthukrishnan, S.1
  • 39
    • 42749107407 scopus 로고    scopus 로고
    • Entropy and information in neural spike trains: Progress on the sampling problem
    • (2004)
    • Ilya Nemenman, William Bialek, and Rob de Ruyter van Steveninck. 2004. Entropy and information in neural spike trains: Progress on the sampling problem. Physical Review E 69, 5 (2004).
    • (2004) Physical Review E , vol.69 , pp. 5
    • Nemenman, I.1    Bialek, W.2    De Ruyter Van Steveninck, R.3
  • 41
    • 0041877169 scopus 로고    scopus 로고
    • Estimation of entropy and mutual information
    • (2003)
    • Liam Paninski. 2003. Estimation of entropy and mutual information. Neural computation 15, 6 (2003), 1191-1253.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1191-1253
    • Paninski, L.1
  • 43
    • 84862656283 scopus 로고    scopus 로고
    • Distributed threshold querying of general functions by a difference of monotonic representation
    • (2010)
    • Guy Sagy, Daniel Keren, Izchak Sharfman, and Assaf Schuster. 2010. Distributed Threshold Querying of General Functions by a Difference of Monotonic Representation. Proc. VLDB Endow. 4, 2 (2010), 46-57.
    • (2010) Proc. VLDB Endow. , vol.4 , Issue.2 , pp. 46-57
    • Sagy, G.1    Keren, D.2    Sharfman, I.3    Schuster, A.4
  • 44
    • 37649030733 scopus 로고    scopus 로고
    • Scaling detection in time series: Diffusion entropy analysis
    • (2002)
    • Nicola Scafetta and Paolo Grigolini. 2002. Scaling detection in time series: Diffusion entropy analysis. Phys. Rev. E 66, 3 (2002), 036130.
    • (2002) Phys. Rev. E , vol.66 , Issue.3 , pp. 036130
    • Scafetta, N.1    Grigolini, P.2
  • 45
    • 36949013219 scopus 로고    scopus 로고
    • A geometric approach to monitoring threshold functions over distributed data streams
    • (2007)
    • Izchak Sharfman, Assaf Schuster, and Daniel Keren. 2007. A geometric approach to monitoring threshold functions over distributed data streams. TODS 32, 4 (2007), 23.
    • (2007) TODS , vol.32 , Issue.4 , pp. 23
    • Sharfman, I.1    Schuster, A.2    Keren, D.3
  • 46
    • 84890095976 scopus 로고    scopus 로고
    • Performance evaluation of data aggregation for cluster-based wireless sensor network
    • (2013)
    • Adwitiya Sinha and Daya Krishan Lobiyal. 2013. Performance evaluation of data aggregation for cluster-based wireless sensor network. Human-centric Computing and Information Sciences 3, 1 (2013).
    • (2013) Human-centric Computing and Information Sciences , vol.3 , pp. 1
    • Sinha, A.1    Lobiyal, D.K.2
  • 47
    • 85029089236 scopus 로고    scopus 로고
    • Distributed convex thresholding
    • Ran Wolff. 2015. Distributed Convex Thresholding. In Proc. PODC '15.
    • (2015) Proc. PODC '15
    • Wolff, R.1
  • 48
    • 84862607713 scopus 로고    scopus 로고
    • Tight bounds for distributed functional monitoring
    • David P. Woodruff and Qin Zhang. 2012. Tight Bounds for Distributed Functional Monitoring. In Proc. STOC '12.
    • (2012) Proc. STOC '12
    • Woodruff, D.P.1    Zhang, Q.2
  • 49
    • 85027707992 scopus 로고    scopus 로고
    • Monitoring properties of large, distributed, dynamic graphs
    • Gal Yehuda, Daniel Keren, and Islam Akaria. 2017. Monitoring Properties of Large, Distributed, Dynamic Graphs. In Proc. IPDPS '17.
    • (2017) Proc. IPDPS '17
    • Yehuda, G.1    Keren, D.2    Akaria, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.