메뉴 건너뛰기




Volumn 39, Issue 2, 2014, Pages

Distributed geometric query monitoring using prediction models

Author keywords

Continuous distributed monitoring; Data streams; Prediction models

Indexed keywords

COMPLEX NETWORKS; COMPUTER AIDED NETWORK ANALYSIS; GEOMETRY; MATHEMATICAL MODELS;

EID: 84901496328     PISSN: 03625915     EISSN: 15574644     Source Type: Journal    
DOI: 10.1145/2602137     Document Type: Article
Times cited : (19)

References (33)
  • 4
    • 35448977776 scopus 로고    scopus 로고
    • Streaming in a connected world: Querying and tracking distributed data streams
    • DOI 10.1145/1247480.1247649, SIGMOD 2007: Proceedings of the ACM SIGMOD International Conference on Management of Data
    • G. Cormode and M. Garofalakis. 2007. Streaming in a connected world: Querying and tracking distributeddata streams. In Proceedings of the ACM SIGMOD International Conference on Management of Data(SIGMOD'07). 1178-1181. (Pubitemid 47630920)
    • (2007) Proceedings of the ACM SIGMOD International Conference on Management of Data , pp. 1178-1181
    • Cormode, G.1    Garofalakis, M.2
  • 5
    • 46649103439 scopus 로고    scopus 로고
    • Approximate continuous querying over distributed streams
    • G. Cormode and M. Garofalakis. 2008. Approximate continuous querying over distributed streams. ACMTrans. Database Syst. 33, 2.
    • (2008) ACMTrans. Database Syst. , vol.33 , pp. 2
    • Cormode, G.1    Garofalakis, M.2
  • 7
    • 79953241666 scopus 로고    scopus 로고
    • Algorithms for distributed functional monitoring
    • G. Cormode, S. Muthukrishnan, and K. Yi. 2011. Algorithms for distributed functional monitoring. ACMTrans. Algor. 7, 21:1-21:20.
    • (2011) ACM Trans. Algor. , vol.7 , pp. 211-2120
    • Cormode, G.1    Muthukrishnan, S.2    Yi, K.3
  • 11
    • 36048989928 scopus 로고    scopus 로고
    • Dissemination of compressed historical informationin sensor networks
    • A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. 2007. Dissemination of compressed historical informationin sensor networks. The VLDB J. 16, 4, 439-461.
    • (2007) The VLDB J , vol.16 , Issue.4 , pp. 439-461
    • Deligiannakis, A.1    Kotidis, Y.2    Roussopoulos, N.3
  • 13
    • 84891129255 scopus 로고    scopus 로고
    • Sketch-based geometric monitoring of distributed streamqueries
    • M. Garofalakis, D. Keren, and V. Samoladas. 2013. Sketch-based geometric monitoring of distributed streamqueries. Proc. VLDB Endow. 6, 10, 937-948.
    • (2013) Proc. VLDB Endow. , vol.6 , Issue.10 , pp. 937-948
    • Garofalakis, M.1    Keren, D.2    Samoladas, V.3
  • 15
  • 16
    • 84881095658 scopus 로고    scopus 로고
    • Ratio threshold queries over distributed data sources
    • R. Gupta, K. Ramamritham, and M. Mohania. 2013. Ratio threshold queries over distributed data sources.Proc. VLDB Endow. 6, 8, 565-576.
    • (2013) Proc. VLDB Endow. , vol.6 , Issue.8 , pp. 565-576
    • Gupta, R.1    Ramamritham, K.2    Mohania, M.3
  • 20
    • 34250622521 scopus 로고    scopus 로고
    • Communication-efficient distributed monitoring of thresholded counts
    • DOI 10.1145/1142473.1142507, SIGMOD 2006 - Proceedings of the ACM SIGMOD International Conference on Management of Data
    • R. Keralapura, G. Cormode, and J. Ramamirtham. 2006. Communication- efficient distributed monitoring ofthresholded counts. In Proceedings of the ACM SIGMOD International Conference on Management ofData (SIGMOD'06). 289-300. (Pubitemid 46946521)
    • (2006) Proceedings of the ACM SIGMOD International Conference on Management of Data , pp. 289-300
    • Keralapura, R.1    Cormode, G.2    Ramamirtham, J.3
  • 22
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorizationresearch
    • D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. 2004. RCV1: A new benchmark collection for text categorizationresearch. J. Mach. Learn. Res. 5, 361-397.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 24
  • 26
    • 84862656283 scopus 로고    scopus 로고
    • Distributed threshold querying of general functionsby a difference of monotonic representation
    • G. Sagy, D. Keren, I. Sharfman, and A. Schuster. 2010. Distributed threshold querying of general functionsby a difference of monotonic representation. Proc. VLDB Endow. 4, 46-57.
    • (2010) Proc. VLDB Endow. , vol.4 , pp. 46-57
    • Sagy, G.1    Keren, D.2    Sharfman, I.3    Schuster, A.4
  • 27
    • 78650415949 scopus 로고    scopus 로고
    • Top-k vectorial aggregation queries in a distributedenvironment
    • G. Sagy, I. Sharfman, D. Keren, and A. Schuster. 2011. Top-k vectorial aggregation queries in a distributedenvironment. J. Parallel Distrib. Comput. 71, 2, 302-315.
    • (2011) J. Parallel Distrib. Comput. , vol.71 , Issue.2 , pp. 302-315
    • Sagy, G.1    Sharfman, I.2    Keren, D.3    Schuster, A.4
  • 30
    • 36949013219 scopus 로고    scopus 로고
    • A geometric approach to monitoring threshold functions overdistributed data streams
    • I. Sharfman, A. Schuster, and D. Keren. 2007b. A geometric approach to monitoring threshold functions overdistributed data streams. ACM Trans. Database Syst. 32, 4.
    • (2007) ACM Trans. Database Syst. , vol.32 , pp. 4
    • Sharfman, I.1    Schuster, A.2    Keren, D.3
  • 32
    • 84872512305 scopus 로고    scopus 로고
    • Optimal tracking of distributed heavy hitters and quantiles
    • K. Yi and Q. Zhang. 2013. Optimal tracking of distributed heavy hitters and quantiles. Algorithmica 65, 1,206-223.
    • (2013) Algorithmica , vol.65 , Issue.1 , pp. 206-223
    • Yi, K.1    Zhang, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.