메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1-286

Machine learning refined: Foundations, algorithms, and applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85022205772     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781316402276     Document Type: Book
Times cited : (154)

References (81)
  • 2
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • Jianguo Zhang et al. Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision 73(2) 213-238, 2007.
    • (2007) International Journal of Computer Vision , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1
  • 3
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2) 91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 6
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Geoffrey Hinton et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, IEEE 29(6) 82-97, 2012.
    • (2012) Signal Processing Magazine, IEEE , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1
  • 7
    • 84944735469 scopus 로고    scopus 로고
    • An MIT Press book in preparation. Draft chapters
    • Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning. An MIT Press book in preparation. Draft chapters available at http://www.iro.umontreal.ca/~bengioy/dlbook (2014).
    • (2014) Deep learning
    • Bengio, Y.1    Goodfellow, I.2    Courville, A.3
  • 9
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature 521(7553) 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 12
    • 85048184246 scopus 로고    scopus 로고
    • World economic outlook database, https://www.imf.org/external/pubs/ft/weo/2013/02/weodata/index.aspx.
  • 17
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • Yoshua Bengio, Yann LeCun, et al. Scaling learning algorithms towards AI. Large-scale Kernel Machines, 34(5), 2007.
    • (2007) Large-scale Kernel Machines , vol.34 , Issue.5
    • Bengio, Y.1    LeCun, Y.2
  • 18
    • 84867120454 scopus 로고    scopus 로고
    • Incremental gradient, subgradient, and proximal methods for convex optimization: A survey
    • MIT Press, 2011
    • Dimitri P Bertsekas. Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. In Optimization for Machine Learning, 2010, 1-38, MIT Press, 2011.
    • (2010) Optimization for Machine Learning , pp. 1-38
    • Bertsekas, D.P.1
  • 21
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic grant descent
    • Springer
    • Léon Bottou. Large-scale machine learning with stochastic grant descent. In Proceedings of COMPSTAT’2010, pp. 177-186. Springer, 2010.
    • (2010) Proceedings of COMPSTAT’2010 , pp. 177-186
    • Bottou, L.1
  • 22
    • 42249094907 scopus 로고    scopus 로고
    • Support vector machine solvers
    • MIT Press
    • Léon Bottou and Chih-Jen Lin. Support vector machine solvers. Large Scale Kernel Machines, pp. 301-320, MIT Press, 2007.
    • (2007) Large Scale Kernel Machines , pp. 301-320
    • Bottou, L.1    Lin, C.-J.2
  • 23
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends ®in Machine Learning, 3(1) 1-122, 2011.
    • (2011) Foundations and Trends ®in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 26
    • 84969213492 scopus 로고    scopus 로고
    • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
    • Paul R Burton, David G Clayton, Lon R Cardon, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145) 661-678, 2007.
    • (2007) Nature , vol.447 , Issue.7145 , pp. 661-678
    • Burton, P.R.1    Clayton, D.G.2    Cardon, L.R.3
  • 27
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • Olivier Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5) 1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 28
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4) 303-314, 1989.
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 33
    • 0035628039 scopus 로고    scopus 로고
    • Model uncertainty in cross-country growth regressions
    • Carmen Fernandez, Eduardo Ley, and Mark FJ Steel. Model uncertainty in cross-country growth regressions. Journal of Applied Econometrics, 16(5) 563-576, 2001.
    • (2001) Journal of Applied Econometrics , vol.16 , Issue.5 , pp. 563-576
    • Fernandez, C.1    Ley, E.2    Steel, M.F.J.3
  • 34
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
    • Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2) 337-407, 2000.
    • (2000) The Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 37
    • 0003410290 scopus 로고
    • Princeton University Press
    • James Douglas Hamilton. Time Series Analysis, volume 2. Princeton University Press, 1994.
    • (1994) Time Series Analysis , vol.2
    • Hamilton, J.D.1
  • 38
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5) 359-366, 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 39
    • 85048205192 scopus 로고    scopus 로고
    • Largest eigenvalue of a positive semi-definite matrix is less than or equal to sum of eigenvalues of its diagonal blocks. Mathematics Stack Exchange. URL(version: 2012-05-14), http://math.stackexchange.com/q/144890
    • Dilawar (http://math.stackexchange.com/users/1674/dilawar). Largest eigenvalue of a positive semi-definite matrix is less than or equal to sum of eigenvalues of its diagonal blocks. Mathematics Stack Exchange. URL: http://math.stackexchange.com/q/144890 (version: 2012-05-14).
    • Dilawar1
  • 41
    • 0023583669 scopus 로고
    • An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex
    • Judson P Jones and Larry A Palmer. An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6) 1233-1258, 1987.
    • (1987) Journal of Neurophysiology , vol.58 , Issue.6 , pp. 1233-1258
    • Jones, J.P.1    Palmer, L.A.2
  • 43
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time series
    • MIT Press
    • Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 3361(10), MIT Press, 1995.
    • (1995) The Handbook of Brain Theory and Neural Networks , vol.3361 , Issue.10
    • LeCun, Y.1    Bengio, Y.2
  • 47
    • 84886567160 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • Moshe Lichman. UCI Machine Learning Repository, [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science, 2013.
    • (2013) UCI Machine Learning Repository
    • Lichman, M.1
  • 55
    • 0019083307 scopus 로고
    • Mathematical description of the responses of simple cortical cells
    • Stjepan Marčelja. Mathematical description of the responses of simple cortical cells. JOSA, 70(11) 1297-1300, 1980.
    • (1980) JOSA , vol.70 , Issue.11 , pp. 1297-1300
    • Marčelja, S.1
  • 56
    • 84908352732 scopus 로고    scopus 로고
    • Modern analogue of ohm’s historical experiment
    • Valerii Mayer and Ekaterina Varaksina. Modern analogue of ohm’s historical experiment. Physics Education, 49(6) 689, 2014.
    • (2014) Physics Education , vol.49 , Issue.6 , pp. 689
    • Mayer, V.1    Varaksina, E.2
  • 57
    • 0031696792 scopus 로고    scopus 로고
    • Cramming more components onto integrated circuits
    • Gordon E Moore. Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1): 82-85, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.1 , pp. 82-85
    • Moore, G.E.1
  • 60
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Research, 37(23) 3311-3325, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 63
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • Jooyoung Park and IrwinWSandberg. Universal approximation using radial-basis-function networks. Neural Computation, 3(2) 246-257, 1991.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 66
    • 0032983160 scopus 로고    scopus 로고
    • On the momentum term in gradient descent learning algorithms
    • Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1) 145-151, 1999.
    • (1999) Neural Networks , vol.12 , Issue.1 , pp. 145-151
    • Qian, N.1
  • 75
    • 42949153772 scopus 로고    scopus 로고
    • Reconstruction of Galileo Galilei’s experiment: The inclined plane
    • Samuele Straulino. Reconstruction of Galileo Galilei’s experiment: the inclined plane. Physics Education, 43(3) 316, 2008.
    • (2008) Physics Education , vol.43 , Issue.3 , pp. 316
    • Straulino, S.1
  • 76
    • 71249151977 scopus 로고    scopus 로고
    • Machine learning in genome-wide association studies
    • Silke Szymczak, Joanna M Biernacka, Heather J Cordell, et al. Machine learning in genome-wide association studies. Genetic Epidemiology, 33(S1) S51-S57, 2009.
    • (2009) Genetic Epidemiology , vol.33 , Issue.S1 , pp. S51-S57
    • Szymczak, S.1    Biernacka, J.M.2    Cordell, H.J.3
  • 79
    • 0001119103 scopus 로고    scopus 로고
    • Notice sur la loi que la population poursuit dans son accroissement
    • Technical report, Retrieved 09/08
    • Pierre Verhulst. Notice sur la loi que la population poursuit dans son accroissement. Correspondance Mathématique et Physique 10: 113-121. Technical report, Retrieved 09/08, 2009.
    • (2009) Correspondance Mathématique et Physique , vol.10 , pp. 113-121
    • Verhulst, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.