메뉴 건너뛰기




Volumn 2, Issue , 2017, Pages 157-163

Using the output embedding to improve language models

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS;

EID: 85021677033     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/e17-2025     Document Type: Conference Paper
Times cited : (591)

References (42)
  • 1
    • 80053233144 scopus 로고    scopus 로고
    • Domain adaptation via pseudo in-domain data selection
    • Edinburgh, Scotland, UK. , July. Association for Computational Linguistics
    • Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011. Domain adaptation via pseudo in-domain data selection. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 355-362, Edinburgh, Scotland, UK. , July. Association for Computational Linguistics.
    • (2011) Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing , pp. 355-362
    • Axelrod, A.1    He, X.2    Gao, J.3
  • 7
    • 0003366048 scopus 로고
    • A new algorithm for data compression
    • Philip Gage. 1994. A new algorithm for data compression. The C Users Journal, 12(2):23-38.
    • (1994) The C Users Journal , vol.12 , Issue.2 , pp. 23-38
    • Gage, P.1
  • 12
  • 15
    • 85013830160 scopus 로고    scopus 로고
    • Simlex-999: Evaluating semantic models with (genuine) similarity estimation
    • Felix Hill, Roi Reichart, and Anna Korhonen. 2016. Simlex-999: Evaluating semantic models with (genuine) similarity estimation. Computational Linguistics.
    • (2016) Computational Linguistics
    • Hill, F.1    Reichart, R.2    Korhonen, A.3
  • 17
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • November
    • Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput. , 9(8):1735-1780, November.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 20
    • 85069972274 scopus 로고    scopus 로고
    • Proceedings of the Seventeenth Conference on Computational Natural Language Learning, chapter BetterWord Representations with Recursive Neural Networks for Morphology
    • Thang Luong, Richard Socher, and Christopher Manning, 2013. Proceedings of the Seventeenth Conference on Computational Natural Language Learning, chapter BetterWord Representations with Recursive Neural Networks for Morphology, pages 104-113. Association for Computational Linguistics.
    • (2013) Association for Computational Linguistics , pp. 104-113
    • Luong, T.1    Socher, R.2    Manning, C.3
  • 22
    • 34249852033 scopus 로고
    • Building a large annotated corpus of english: The penn treebank
    • June
    • Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus of english: The penn treebank. Comput. Linguist. , 19(2):313-330, June.
    • (1993) Comput. Linguist. , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.P.1    Ann Marcinkiewicz, M.2    Santorini, B.3
  • 31
  • 35
    • 85011827221 scopus 로고    scopus 로고
    • Neural machine translation of rare words with subword units
    • Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of ACL.
    • (2016) Proceedings of ACL
    • Sennrich, R.1    Haddow, B.2    Birch, A.3
  • 36
    • 84897493971 scopus 로고    scopus 로고
    • Master's thesis, University of Toronto, Toronto, Canada, January
    • Nitish Srivastava. 2013. Improving Neural Networks with Dropout. Master's thesis, University of Toronto, Toronto, Canada, January.
    • (2013) Improving Neural Networks with Dropout
    • Srivastava, N.1
  • 37
    • 84878402147 scopus 로고    scopus 로고
    • Lstm neural networks for language modeling
    • Portland, OR, USA, September
    • Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. 2012. Lstm neural networks for language modeling. In Interspeech, pages 194-197, Portland, OR, USA, September.
    • (2012) Interspeech , pp. 194-197
    • Sundermeyer, M.1    Schlüter, R.2    Ney, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.