메뉴 건너뛰기




Volumn 81, Issue 7, 2017, Pages 1320-1326

Erratum: Auxin signaling through SCFTIR1/AFBsmediates feedback regulation of IAA biosynthesis (Bioscience, Biotechnology, and Biochemistry DOI: 10.1080/09168451.2017.1313694);Auxin signaling through SCFTIR1/AFBs mediates feedback regulation of IAA biosynthesis

Author keywords

Arabidopsis; Auxin; Feedback regulation

Indexed keywords

BIOCHEMISTRY; BIOSYNTHESIS; GENE EXPRESSION; ORGANIC ACIDS; POLYCYCLIC AROMATIC HYDROCARBONS; SIGNAL TRANSDUCTION;

EID: 85021102712     PISSN: 09168451     EISSN: 13476947     Source Type: Journal    
DOI: 10.1093/bbb/zbab052     Document Type: Erratum
Times cited : (36)

References (51)
  • 1
    • 84921388035 scopus 로고    scopus 로고
    • Auxin biosynthesis
    • Zhao Y. Auxin biosynthesis. Arab Book. 2014:e0173. DOI:10.1199/tab.0173
    • (2014) Arab Book , pp. e0173
    • Zhao, Y.1
  • 2
    • 84868213276 scopus 로고    scopus 로고
    • Tissue-specific profiling of the arabidopsis thaliana auxin metabolome
    • Novák O, Hényková E, Sairanen I, et al. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72 (3):523-536.
    • (2012) Plant J. , vol.72 , Issue.3 , pp. 523-536
    • Novák, O.1    Hényková, E.2    Sairanen, I.3
  • 3
    • 0032499695 scopus 로고    scopus 로고
    • High temperature promotes auxin-mediated hypocotyl elongation in arabidopsis
    • Gray WM, Östin A, Sandberg G, et al. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Nat Acad Sci USA. 1998;95(12):7197-7202.
    • (1998) Proc Nat Acad Sci USA , vol.95 , Issue.12 , pp. 7197-7202
    • Gray, W.M.1    Östin, A.2    Sandberg, G.3
  • 4
    • 75649122586 scopus 로고    scopus 로고
    • Auxin response in arabidopsis under cold stress: Underlying molecular mechanisms
    • Shibasaki K, Uemura M, Tsurumi S, et al. Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell. 2009;21(12):3823-3838.
    • (2009) Plant Cell. , vol.21 , Issue.12 , pp. 3823-3838
    • Shibasaki, K.1    Uemura, M.2    Tsurumi, S.3
  • 5
    • 19544386804 scopus 로고    scopus 로고
    • The arabidopsis F-box protein TIR1 is an auxin receptor
    • Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005;435(7041):446-451.
    • (2005) Nature , vol.435 , Issue.7041 , pp. 446-451
    • Kepinski, S.1    Leyser, O.2
  • 6
    • 19544379019 scopus 로고    scopus 로고
    • The F-box protein TIR1 is an auxin receptor
    • Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435(7041):441-445.
    • (2005) Nature , vol.435 , Issue.7041 , pp. 441-445
    • Dharmasiri, N.1    Dharmasiri, S.2    Estelle, M.3
  • 7
    • 34247219263 scopus 로고    scopus 로고
    • Mechanism of auxin perception by the TIR1 ubiquitin ligase
    • Tan X, Calderon-Villalobos LIA, Sharon M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature. 2007;446 (7136):640-645.
    • (2007) Nature , vol.446 , Issue.7136 , pp. 640-645
    • Tan, X.1    Calderon-Villalobos, L.I.A.2    Sharon, M.3
  • 8
    • 84861883418 scopus 로고    scopus 로고
    • Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in arabidopsis
    • Takahashi K, Hayashi K, Kinoshita T. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol. 2012;159(2): 632-641.
    • (2012) Plant Physiol. , vol.159 , Issue.2 , pp. 632-641
    • Takahashi, K.1    Hayashi, K.2    Kinoshita, T.3
  • 9
    • 0035890987 scopus 로고    scopus 로고
    • Auxin regulates SCF (TIR1)-dependent degradation of AUX/IAA proteins
    • Gray WM, Kepinski S, Rouse D, et al. Auxin regulates SCF (TIR1)-dependent degradation of AUX/IAA proteins. Nature. 2001;414(6861):271-276.
    • (2001) Nature , vol.414 , Issue.6861 , pp. 271-276
    • Gray, W.M.1    Kepinski, S.2    Rouse, D.3
  • 10
    • 0029391276 scopus 로고
    • Composite structure of auxin response elements
    • Ulmasov T, Liu ZB, Hagen G, et al. Composite structure of auxin response elements. Plant Cell. 1995;7(10):1611-1623.
    • (1995) Plant Cell. , vol.7 , Issue.10 , pp. 1611-1623
    • Ulmasov, T.1    Liu, Z.B.2    Hagen, G.3
  • 11
    • 0035999463 scopus 로고    scopus 로고
    • Auxin-responsive gene expression: Genes, promoters and regulatory factors
    • Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol. 2002;49(3-4): 373-385.
    • (2002) Plant Mol Biol. , vol.49 , Issue.3-4 , pp. 373-385
    • Hagen, G.1    Guilfoyle, T.2
  • 12
    • 0030140041 scopus 로고    scopus 로고
    • Early genes and auxin action
    • Abel S, Theologis A. Early genes and auxin action. Plant Physiol. 1996;111(1):9-17.
    • (1996) Plant Physiol. , vol.111 , Issue.1 , pp. 9-17
    • Abel, S.1    Theologis, A.2
  • 13
    • 0033230798 scopus 로고    scopus 로고
    • AXR1 acts after lateral bud formation to inhibit lateral bud growth in arabidopsis
    • Stirnberg P, Chatfield SP, Leyser HMO. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiol. 1999;121(3):839-847.
    • (1999) Plant Physiol. , vol.121 , Issue.3 , pp. 839-847
    • Stirnberg, P.1    Chatfield, S.P.2    Leyser, H.M.O.3
  • 14
    • 73649142740 scopus 로고    scopus 로고
    • The past, present, and future of chemical biology in auxin research
    • De Rybel B, Audenaert D, Beeckman T, et al. The past, present, and future of chemical biology in auxin research. ACS Chem Biol. 2009;4(12):987-998.
    • (2009) ACS Chem Biol. , vol.4 , Issue.12 , pp. 987-998
    • De Rybel, B.1    Audenaert, D.2    Beeckman, T.3
  • 15
    • 84898409067 scopus 로고    scopus 로고
    • Auxin biology revealed by small molecules
    • Ma Q, Robert S. Auxin biology revealed by small molecules. Physiol Plant. 2014;151(1):25-42.
    • (2014) Physiol Plant. , vol.151 , Issue.1 , pp. 25-42
    • Ma, Q.1    Robert, S.2
  • 16
    • 0025292811 scopus 로고
    • A dominant mutation in arabidopsis confers resistance to auxin, ethylene and abscisic acid
    • Wilson AK, Pickett FB, Turner JC, et al. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet MGG. 1990;222(2-3):377-383.
    • (1990) Mol Gen Genet MGG , vol.222 , Issue.2-3 , pp. 377-383
    • Wilson, A.K.1    Pickett, F.B.2    Turner, J.C.3
  • 17
    • 0030237222 scopus 로고    scopus 로고
    • Mutations in the AXR3 gene of arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter
    • Leyser HMO, Pickett FB, Dharmasiri S, et al. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J. 1996;10(3):403-413.
    • (1996) Plant J. , vol.10 , Issue.3 , pp. 403-413
    • Leyser, H.M.O.1    Pickett, F.B.2    Dharmasiri, S.3
  • 18
    • 0032570689 scopus 로고    scopus 로고
    • Changes in auxin response from mutations in an AUX/IAA gene
    • Rouse D, Mackay P, Stirnberg P, et al. Changes in auxin response from mutations in an AUX/IAA gene. Science. 1998;279(5355):1371-1373.
    • (1998) Science , vol.279 , Issue.5355 , pp. 1371-1373
    • Rouse, D.1    Mackay, P.2    Stirnberg, P.3
  • 19
    • 21344458139 scopus 로고    scopus 로고
    • Plant development is regulated by a family of auxin receptor F box proteins
    • Dharmasiri N, Dharmasiri S, Weijers D, et al. Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell. 2005;9(1):109-119.
    • (2005) Dev Cell. , vol.9 , Issue.1 , pp. 109-119
    • Dharmasiri, N.1    Dharmasiri, S.2    Weijers, D.3
  • 20
    • 84923035869 scopus 로고    scopus 로고
    • The PB1 domain in auxin response factor and aux/IAA proteins: A versatile protein interaction module in the auxin response
    • Guilfoyle TJ. The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. Plant Cell. 2015;27(1):33-43.
    • (2015) Plant Cell. , vol.27 , Issue.1 , pp. 33-43
    • Guilfoyle, T.J.1
  • 21
    • 84968754615 scopus 로고    scopus 로고
    • Transcriptional responses to the auxin hormone
    • Weijers D, Wagner D. Transcriptional responses to the auxin hormone. Annu Rev Plant Biol. 2016;67(1): null.
    • (2016) Annu Rev Plant Biol. , vol.67 , Issue.1
    • Weijers, D.1    Wagner, D.2
  • 22
    • 84928150286 scopus 로고    scopus 로고
    • Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in arabidopsis
    • Wang B, Chu J, Yu T, et al. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Nat Acad Sci. 2015;112(15):4821-4826.
    • (2015) Proc Nat Acad Sci. , vol.112 , Issue.15 , pp. 4821-4826
    • Wang, B.1    Chu, J.2    Yu, T.3
  • 23
    • 84861407036 scopus 로고    scopus 로고
    • The pathway of auxin biosynthesis in plants
    • Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J Exp Bot. 2012;63(8):2853-2872.
    • (2012) J Exp Bot. , vol.63 , Issue.8 , pp. 2853-2872
    • Mano, Y.1    Nemoto, K.2
  • 24
    • 84866424536 scopus 로고    scopus 로고
    • Cellular auxin homeostasis: Gatekeeping is housekeeping
    • Ruiz Rosquete M, Barbez E, Kleine-Vehn J. Cellular auxin homeostasis: gatekeeping is housekeeping. Mol Plant. 2012;5(4): 772-786.
    • (2012) Mol Plant. , vol.5 , Issue.4 , pp. 772-786
    • Ruiz Rosquete, M.1    Barbez, E.2    Kleine-Vehn, J.3
  • 25
    • 84873743568 scopus 로고    scopus 로고
    • Auxin metabolism and homeostasis during plant development
    • Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140(5):943-950.
    • (2013) Development. , vol.140 , Issue.5 , pp. 943-950
    • Ljung, K.1
  • 26
  • 27
    • 81055130049 scopus 로고    scopus 로고
    • The main auxin biosynthesis pathway in arabidopsis
    • Mashiguchi K, Tanaka K, Sakai T, et al. The main auxin biosynthesis pathway in Arabidopsis. Proc Nat Acad Sci. 2011;108 (45):18512-18517.
    • (2011) Proc Nat Acad Sci. , vol.108 , Issue.45 , pp. 18512-18517
    • Mashiguchi, K.1    Tanaka, K.2    Sakai, T.3
  • 28
    • 81055145212 scopus 로고    scopus 로고
    • Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANS-FERASES OF ARABIDOPSIS and YUCCAs in arabidopsis
    • Won C, Shen X, Mashiguchi K, et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANS-FERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Nat Acad Sci. 2011;108(45):18518-18523.
    • (2011) Proc Nat Acad Sci. , vol.108 , Issue.45 , pp. 18518-18523
    • Won, C.1    Shen, X.2    Mashiguchi, K.3
  • 29
    • 84859143013 scopus 로고    scopus 로고
    • Auxin biosynthesis: A simple two-step pathway converts tryptophan to indole-3-acetic acid in plants
    • Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant. 2012;5 (2):334-338.
    • (2012) Mol Plant. , vol.5 , Issue.2 , pp. 334-338
    • Zhao, Y.1
  • 30
    • 41149143843 scopus 로고    scopus 로고
    • TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development
    • Stepanova AN, Robertson-Hoyt J, Yun J, et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133(1):177-191.
    • (2008) Cell. , vol.133 , Issue.1 , pp. 177-191
    • Stepanova, A.N.1    Robertson-Hoyt, J.2    Yun, J.3
  • 31
    • 41149134058 scopus 로고    scopus 로고
    • Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants
    • Tao Y, Ferrer J-L, Ljung K, et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008;133(1):164-176.
    • (2008) Cell. , vol.133 , Issue.1 , pp. 164-176
    • Tao, Y.1    Ferrer, J.-L.2    Ljung, K.3
  • 32
    • 70349466371 scopus 로고    scopus 로고
    • The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development
    • Yamada M, Greenham K, Prigge MJ, et al. The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol. 2009;151(1):168-179.
    • (2009) Plant Physiol. , vol.151 , Issue.1 , pp. 168-179
    • Yamada, M.1    Greenham, K.2    Prigge, M.J.3
  • 33
    • 0035847040 scopus 로고    scopus 로고
    • A role for flavin monooxygenase-like enzymes in auxin biosynthesis
    • Zhao Y, Christensen SK, Fankhauser C, et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science. 2001;291(5502):306-309.
    • (2001) Science , vol.291 , Issue.5502 , pp. 306-309
    • Zhao, Y.1    Christensen, S.K.2    Fankhauser, C.3
  • 34
    • 84877708598 scopus 로고    scopus 로고
    • The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression
    • Hentrich M, Böttcher C, Düchting P, et al. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 2013;74(4):626-637.
    • (2013) Plant J. , vol.74 , Issue.4 , pp. 626-637
    • Hentrich, M.1    Böttcher, C.2    Düchting, P.3
  • 35
    • 84902475512 scopus 로고    scopus 로고
    • Auxin overproduction in shoots cannot rescue auxin deficiencies in arabidopsis roots
    • Chen Q, Dai X, De-Paoli H, et al. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol. 2014;55(6):1072-1079.
    • (2014) Plant Cell Physiol. , vol.55 , Issue.6 , pp. 1072-1079
    • Chen, Q.1    Dai, X.2    De-Paoli, H.3
  • 36
    • 33745602479 scopus 로고    scopus 로고
    • Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in arabidopsis
    • Cheng Y, Dai X, Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20 (13):1790-1799.
    • (2006) Genes Dev. , vol.20 , Issue.13 , pp. 1790-1799
    • Cheng, Y.1    Dai, X.2    Zhao, Y.3
  • 37
    • 84860224747 scopus 로고    scopus 로고
    • Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in arabidopsis
    • Lee M, Jung J-H, Han D-Y, et al. Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta. 2011;235(5):923-938.
    • (2011) Planta. , vol.235 , Issue.5 , pp. 923-938
    • Lee, M.1    Jung, J.-H.2    Han, D.-Y.3
  • 38
    • 84931567882 scopus 로고    scopus 로고
    • Transcriptional feedback regulation of YUCCA genes in response to auxin levels in arabidopsis
    • Suzuki M, Yamazaki C, Mitsui M, et al. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Plant Cell Rep. 2015;34(8):1343-1352.
    • (2015) Plant Cell Rep. , vol.34 , Issue.8 , pp. 1343-1352
    • Suzuki, M.1    Yamazaki, C.2    Mitsui, M.3
  • 39
    • 84950310129 scopus 로고    scopus 로고
    • Small molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function
    • Kakei Y, Yamazaki C, Suzuki M, et al. Small molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. Plant J. 2015;84(4):827-837.
    • (2015) Plant J. , vol.84 , Issue.4 , pp. 827-837
    • Kakei, Y.1    Yamazaki, C.2    Suzuki, M.3
  • 40
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method
    • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402-408.
    • (2001) Methods , vol.25 , Issue.4 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2
  • 41
    • 0036581417 scopus 로고    scopus 로고
    • GATEWAY™ vectors for agrobacterium-mediated plant transformation
    • Karimi M, Inzé D, Depicker A. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7(5):193-195.
    • (2002) Trends Plant Sci. , vol.7 , Issue.5 , pp. 193-195
    • Karimi, M.1    Inzé, D.2    Depicker, A.3
  • 42
    • 0032447801 scopus 로고    scopus 로고
    • Floral dip: A simplified method for agrobacterium-mediated transformation of arabidopsis thaliana
    • Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735-743.
    • (1998) Plant J. , vol.16 , Issue.6 , pp. 735-743
    • Clough, S.J.1    Bent, A.F.2
  • 43
    • 84858653852 scopus 로고    scopus 로고
    • Rational design of an auxin antagonist of the SCF TIR1 auxin receptor complex
    • Hayashi K, Neve J, Hirose M, et al. Rational design of an auxin antagonist of the SCF TIR1 auxin receptor complex. ACS Chem Biol. 2012;7(3):590-598.
    • (2012) ACS Chem Biol. , vol.7 , Issue.3 , pp. 590-598
    • Hayashi, K.1    Neve, J.2    Hirose, M.3
  • 44
    • 62549165835 scopus 로고    scopus 로고
    • Phosphate availability alters lateral root development in arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor
    • Pérez-Torres C-A, López-Bucio J, Cruz-Ramírez A, et al. Phosphate availability alters lateral root development in arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell. 2008;20(12):3258-3272.
    • (2008) Plant Cell. , vol.20 , Issue.12 , pp. 3258-3272
    • Pérez-Torres, C.-A.1    López-Bucio, J.2    Cruz-Ramírez, A.3
  • 45
    • 84859973898 scopus 로고    scopus 로고
    • Multiple AUX/IAA-ARF modules regulate lateral root formation: The role of arabidopsis SHY2/IAA3-mediated auxin signalling
    • Goh T, Kasahara H, Mimura T, et al. Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling. Philos Trans R Soc B Biol Sci. 2012;367(1595):1461-1468.
    • (2012) Philos Trans R Soc B Biol Sci. , vol.367 , Issue.1595 , pp. 1461-1468
    • Goh, T.1    Kasahara, H.2    Mimura, T.3
  • 46
    • 84894849355 scopus 로고    scopus 로고
    • A map of cell type-specific auxin responses
    • Bargmann BOR, Vanneste S, Krouk G, et al. A map of cell type-specific auxin responses. Mol Syst Biol. 2013;9(1):688-688.
    • (2013) Mol Syst Biol. , vol.9 , Issue.1 , pp. 688
    • Bargmann, B.O.R.1    Vanneste, S.2    Krouk, G.3
  • 47
    • 84939512569 scopus 로고    scopus 로고
    • Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants
    • Sugawara S, Mashiguchi K, Tanaka K, et al. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol. 2015;56(8):1641-1654.
    • (2015) Plant Cell Physiol. , vol.56 , Issue.8 , pp. 1641-1654
    • Sugawara, S.1    Mashiguchi, K.2    Tanaka, K.3
  • 48
    • 19544366287 scopus 로고    scopus 로고
    • Auxin: Regulation, action, and interaction
    • Woodward AW, Bartel B. Auxin: regulation, action, and interaction. Ann. Bot. 2005;95(5):707-735.
    • (2005) Ann. Bot. , vol.95 , Issue.5 , pp. 707-735
    • Woodward, A.W.1    Bartel, B.2
  • 49
    • 84940571251 scopus 로고    scopus 로고
    • A novel thiol-reductase activity of arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis
    • Cha J-Y, Kim W-Y, Kang SB, et al. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nat Commun. 2015;6:8041. DOI:10.1038/ncomms9041
    • (2015) Nat Commun. , vol.6 , pp. 8041
    • Cha, J.-Y.1    Kim, W.-Y.2    Kang, S.B.3
  • 50
    • 84921395734 scopus 로고    scopus 로고
    • Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation
    • Vragović K, Sela A, Friedlander-Shani L, et al. Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation. Proc Nat Acad Sci. 2015;112(3):923-928.
    • (2015) Proc Nat Acad Sci. , vol.112 , Issue.3 , pp. 923-928
    • Vragović, K.1    Sela, A.2    Friedlander-Shani, L.3
  • 51
    • 34548357289 scopus 로고    scopus 로고
    • Ethylene upregulates auxin biosynthesis in arabidopsis seedlings to enhance inhibition of root cell elongation
    • Swarup R, Perry P, Hagenbeek D, et al. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 2007;19(7):2186-2196.
    • (2007) Plant Cell. , vol.19 , Issue.7 , pp. 2186-2196
    • Swarup, R.1    Perry, P.2    Hagenbeek, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.