메뉴 건너뛰기




Volumn 33, Issue 5, 2017, Pages 718-725

Robust parameter estimation for dynamical systems from outlier-corrupted data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BIOLOGICAL MODEL; SIGNAL TRANSDUCTION; STATISTICAL MODEL;

EID: 85020126410     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw703     Document Type: Article
Times cited : (43)

References (37)
  • 1
    • 19344372271 scopus 로고    scopus 로고
    • Systems biology: Its practice and challenges
    • Aderem,A. (2005) Systems biology: its practice and challenges. Cell, 121, 511-513.
    • (2005) Cell , vol.121 , pp. 511-513
    • Aderem, A.1
  • 2
    • 84976507141 scopus 로고    scopus 로고
    • Outlier analysis
    • Springer, New York
    • Aggarwal,C.C. (2015) Outlier analysis. In: Data Mining, pp. 237-263. Springer, New York.
    • (2015) Data Mining , pp. 237-263
    • Aggarwal, C.C.1
  • 5
    • 83655190519 scopus 로고    scopus 로고
    • Robust estimation for ordinary differential equation models
    • Cao,J. et al. (2011) Robust estimation for ordinary differential equation models. Biometrics, 67, 1305-1313.
    • (2011) Biometrics , vol.67 , pp. 1305-1313
    • Cao, J.1
  • 6
    • 84883461647 scopus 로고    scopus 로고
    • Absolute quantitation of endogenous proteins with precision and accuracy using a capillary western system
    • Chen,J.Q. et al. (2013) Absolute quantitation of endogenous proteins with precision and accuracy using a capillary western system. Anal. Biochem., 442, 97-103.
    • (2013) Anal. Biochem. , vol.442 , pp. 97-103
    • Chen, J.Q.1
  • 7
    • 33746447668 scopus 로고    scopus 로고
    • Multivariate student-t regression models: Pitfalls and inference
    • Fernández,C., and Steel,M.F. (1999) Multivariate student-t regression models: Pitfalls and inference. Biometrika, 86, 153-167.
    • (1999) Biometrika , vol.86 , pp. 153-167
    • Fernández, C.1    Steel, M.F.2
  • 8
    • 84930726508 scopus 로고    scopus 로고
    • Outliers: An evaluation of methodologies
    • American Statistical Association, San Diego, CA
    • Ghosh,D., and Vogt,A. (2012). Outliers: An evaluation of methodologies. In: Joint Statistical Meetings, pp. 3455-3460. American Statistical Association, San Diego, CA.
    • (2012) Joint Statistical Meetings , pp. 3455-3460
    • Ghosh, D.1    Vogt, A.2
  • 10
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge,V.J., and Austin,J. (2004) A survey of outlier detection methodologies. Artif. Intell. Rev., 22, 85-126.
    • (2004) Artif. Intell. Rev. , vol.22 , pp. 85-126
    • Hodge, V.J.1    Austin, J.2
  • 11
    • 84991510907 scopus 로고    scopus 로고
    • Analysis of CFSE time-series data using division-, age- and label-structured population models
    • Hross,S., and Hasenauer,J. (2016) Analysis of CFSE time-series data using division-, age- and label-structured population models. Bioinformatics, 32, 2321-2329.
    • (2016) Bioinformatics , vol.32 , pp. 2321-2329
    • Hross, S.1    Hasenauer, J.2
  • 12
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • Huber,P.J. et al. (1964) Robust estimation of a location parameter. Ann. Math. Stat., 35, 73-101.
    • (1964) Ann. Math. Stat. , vol.35 , pp. 73-101
    • Huber, P.J.1
  • 13
    • 0035775725 scopus 로고    scopus 로고
    • A new approach to decoding life: Systems biology
    • Ideker,T. et al. (2001) A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet., 2, 343-372.
    • (2001) Annu. Rev. Genomics Hum. Genet. , vol.2 , pp. 343-372
    • Ideker, T.1
  • 14
    • 0037848605 scopus 로고    scopus 로고
    • A skew extension of the t-distribution, with applications
    • Jones,M., and Faddy,M. (2003) A skew extension of the t-distribution, with applications. J. R. Stat. Soc. Ser. B Stat. Methodol., 65, 159-174.
    • (2003) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.65 , pp. 159-174
    • Jones, M.1    Faddy, M.2
  • 15
    • 84988516464 scopus 로고    scopus 로고
    • CERENA: ChEmical REaction Network Analyzer - A toolbox for the simulation and analysis of stochastic chemical kinetics
    • Kazeroonian,A. et al. (2016) CERENA: ChEmical REaction Network Analyzer - a toolbox for the simulation and analysis of stochastic chemical kinetics. PLoS ONE, 11, e0146732.
    • (2016) PLoS ONE , vol.11
    • Kazeroonian, A.1
  • 16
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: A brief overview
    • Kitano,H. (2002) Systems biology: a brief overview. Science, 295, 1662-1664.
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 18
    • 35748945147 scopus 로고    scopus 로고
    • An error model for protein quantification
    • Kreutz,C. et al. (2007) An error model for protein quantification. Bioinformatics, 23, 2747-2753.
    • (2007) Bioinformatics , vol.23 , pp. 2747-2753
    • Kreutz, C.1
  • 19
    • 84865642147 scopus 로고    scopus 로고
    • Likelihood based observability analysis and confidence intervals for predictions of dynamic models
    • Kreutz,C. et al. (2012) Likelihood based observability analysis and confidence intervals for predictions of dynamic models. BMC Syst. Biol., 6, 120.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 120
    • Kreutz, C.1
  • 20
    • 84950441032 scopus 로고
    • Robust statistical modeling using the t distribution
    • Lange,K.L. et al. (1989) Robust statistical modeling using the t distribution. J. Am. Statist. Assoc., 84, 881-896.
    • (1989) J. Am. Statist. Assoc. , vol.84 , pp. 881-896
    • Lange, K.L.1
  • 22
    • 80054705446 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies and their applications
    • Hepu,D. et al., Springer, Berlin, Heidelberg
    • Niu,Z. et al. (2011) A survey of outlier detection methodologies and their applications. In: Hepu,D. et al., Artificial Intelligence and Computational Intelligence, pp. 380-387. Springer, Berlin, Heidelberg.
    • (2011) Artificial Intelligence and Computational Intelligence , pp. 380-387
    • Niu, Z.1
  • 23
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using the t distribution
    • Peel,D., and McLachlan,G.J. (2000) Robust mixture modelling using the t distribution. Stat. Comput., 10, 339-348.
    • (2000) Stat. Comput. , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 25
    • 84957937249 scopus 로고    scopus 로고
    • Robust estimation of parameters in nonlinear ordinary differential equation models
    • Qiu,Y. et al. (2016) Robust estimation of parameters in nonlinear ordinary differential equation models. J. Syst. Sci. Complexity, 29, 41-60.
    • (2016) J. Syst. Sci. Complexity , vol.29 , pp. 41-60
    • Qiu, Y.1
  • 26
    • 0033249408 scopus 로고    scopus 로고
    • Bayes factors and BIC
    • Raftery,A.E. (1999) Bayes factors and BIC. Sociol. Methods Res., 27, 411-417.
    • (1999) Sociol. Methods Res. , vol.27 , pp. 411-417
    • Raftery, A.E.1
  • 27
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • ACM
    • Ramaswamy,S. et al. (2000). Efficient algorithms for mining outliers from large data sets. In: ACM SIGMOD Record, vol. 29, pp. 427-438. ACM.
    • (2000) ACM SIGMOD Record , vol.29 , pp. 427-438
    • Ramaswamy, S.1
  • 28
    • 67650760503 scopus 로고    scopus 로고
    • Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
    • Raue,A. et al. (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25, 1923-1929.
    • (2009) Bioinformatics , vol.25 , pp. 1923-1929
    • Raue, A.1
  • 29
    • 84884755942 scopus 로고    scopus 로고
    • Lessons learned from quantitative dynamical modeling in systems biology
    • Raue,A. et al. (2013) Lessons learned from quantitative dynamical modeling in systems biology. PLoS ONE, 8, e74335.
    • (2013) PLoS ONE , vol.8
    • Raue, A.1
  • 31
    • 84866459775 scopus 로고    scopus 로고
    • Comprehensive estimation of input signals and dynamics in biochemical reaction networks
    • Schelker,M. et al. (2012) Comprehensive estimation of input signals and dynamics in biochemical reaction networks. Bioinformatics, 28, i529-i534.
    • (2012) Bioinformatics , vol.28 , pp. i529-i534
    • Schelker, M.1
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz,G. (1978) Estimating the dimension of a model. Ann. Stat., 6, 461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 0033189795 scopus 로고    scopus 로고
    • Robust parameter estimation in computer vision
    • Stewart,C.V. (1999) Robust parameter estimation in computer vision. SIAM Rev., 41, 513-537.
    • (1999) SIAM Rev. , vol.41 , pp. 513-537
    • Stewart, C.V.1
  • 34
    • 0037417886 scopus 로고    scopus 로고
    • Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling
    • Swameye,I. et al. (2003) Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proc. Natl. Acad. Sci. U. S. A., 100, 1028-1033.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 1028-1033
    • Swameye, I.1
  • 36
    • 84993782426 scopus 로고    scopus 로고
    • Joint modelling of location and scale parameters of the t distribution
    • Taylor,J., and Verbyla,A. (2004) Joint modelling of location and scale parameters of the t distribution. Stat. Model., 4, 91-112.
    • (2004) Stat. Model. , vol.4 , pp. 91-112
    • Taylor, J.1    Verbyla, A.2
  • 37
    • 0001972601 scopus 로고
    • The large-sample distribution of the likelihood ratio for testing composite hypotheses
    • Wilks,S.S. (1938) The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat., 9, 60-62.
    • (1938) Ann. Math. Stat. , vol.9 , pp. 60-62
    • Wilks, S.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.