-
1
-
-
84983344352
-
-
M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898–6926;
-
(2016)
J. Org. Chem.
, vol.81
, pp. 6898-6926
-
-
Shaw, M.H.1
Twilton, J.2
MacMillan, D.W.C.3
-
2
-
-
84880124916
-
-
C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322.
-
(2013)
Chem. Rev.
, vol.113
, pp. 5322
-
-
Prier, C.K.1
Rankic, D.A.2
MacMillan, D.W.C.3
-
3
-
-
85021018633
-
-
For recent examples, see Pd
-
For recent examples, see: Pd:
-
-
-
-
5
-
-
83055161587
-
-
Au
-
D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18566; Au:
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 18566
-
-
Kalyani, D.1
McMurtrey, K.B.2
Neufeldt, S.R.3
Sanford, M.S.4
-
6
-
-
84941055830
-
-
M. N. Hopkinson, B. Sahoo, F. Glorius, Adv. Synth. Catal. 2014, 356, 2794;
-
(2014)
Adv. Synth. Catal.
, vol.356
, pp. 2794
-
-
Hopkinson, M.N.1
Sahoo, B.2
Glorius, F.3
-
7
-
-
84899500083
-
-
X. Z. Shu, M. Zhang, Y. He, H. Frei, F. D. Toste, J. Am. Chem. Soc. 2014, 136, 5844;
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 5844
-
-
Shu, X.Z.1
Zhang, M.2
He, Y.3
Frei, H.4
Toste, F.D.5
-
8
-
-
84960145256
-
-
Ni
-
A. Tlahuext-Aca, M. N. Hopkinson, R. A. Garza-Sanchez, F. Glorius, Chem. Eur. J. 2016, 22, 5909; Ni:
-
(2016)
Chem. Eur. J.
, vol.22
, pp. 5909
-
-
Tlahuext-Aca, A.1
Hopkinson, M.N.2
Garza-Sanchez, R.A.3
Glorius, F.4
-
9
-
-
84904800842
-
-
J. C. Tellis, D. N. Primer, G. A. Molander, Science 2014, 345, 433;
-
(2014)
Science
, vol.345
, pp. 433
-
-
Tellis, J.C.1
Primer, D.N.2
Molander, G.A.3
-
10
-
-
84921483701
-
-
A. Noble, S. J. McCarver, D. W. C. MacMillan, J. Am. Chem. Soc. 2015, 137, 624;
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 624
-
-
Noble, A.1
McCarver, S.J.2
MacMillan, D.W.C.3
-
11
-
-
84930268175
-
-
L. Chu, J. M. Lipshultz, D. W. C. MacMillan, Angew. Chem. Int. Ed. 2015, 54, 7929;
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 7929
-
-
Chu, L.1
Lipshultz, J.M.2
MacMillan, D.W.C.3
-
12
-
-
85013291262
-
-
Angew. Chem. 2015, 127, 8040;
-
(2015)
Angew. Chem.
, vol.127
, pp. 8040
-
-
-
14
-
-
85020961605
-
-
For reviews on C−H bond functionalization in combination with photoredox catalysis, see
-
For reviews on C−H bond functionalization in combination with photoredox catalysis, see:
-
-
-
-
16
-
-
85023761489
-
-
and references therein
-
QinL. ZhuS. Luo, Chem. Rev. 2017, 117, https://doi.org/10.1021/acs.chemrev.6b00657, and references therein.
-
(2017)
Chem. Rev.
, pp. 117
-
-
Qin, L.1
Zhu, S.2
-
17
-
-
85020954683
-
-
For synthetic applications of hypervalent iodine(III) reagents under photoredox catalysis, see:
-
For synthetic applications of hypervalent iodine(III) reagents under photoredox catalysis, see:
-
-
-
-
19
-
-
84961123136
-
-
R. Sakamoto, T. Inada, S. Selmadurai, S. A. Moteki, K. Maruoka, Chem. Commun. 2016, 52, 3758.
-
(2016)
Chem. Commun.
, vol.52
, pp. 3758
-
-
Sakamoto, R.1
Inada, T.2
Selmadurai, S.3
Moteki, S.A.4
Maruoka, K.5
-
20
-
-
84990060779
-
-
M. Yan, J. C. Lo, J. T. Edwards, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 12692;
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 12692
-
-
Yan, M.1
Lo, J.C.2
Edwards, J.T.3
Baran, P.S.4
-
21
-
-
84865838463
-
-
J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51, 8960;
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 8960
-
-
Yamaguchi, J.1
Yamaguchi, A.D.2
Itami, K.3
-
22
-
-
84901371702
-
-
Angew. Chem. 2012, 124, 9092.
-
(2012)
Angew. Chem.
, vol.124
, pp. 9092
-
-
-
23
-
-
85020953646
-
-
For recent reports on the Hofmann–Löffler reaction, see
-
For recent reports on the Hofmann–Löffler reaction, see:
-
-
-
-
25
-
-
84978064880
-
-
Angew. Chem. 2015, 127, 8405;
-
(2015)
Angew. Chem.
, vol.127
, pp. 8405
-
-
-
26
-
-
84957876121
-
-
C. Q. O'Broin, P. Fernández, C. Martínez, K. Muñiz, Org. Lett. 2016, 18, 436;
-
(2016)
Org. Lett.
, vol.18
, pp. 436
-
-
O'Broin, C.Q.1
Fernández, P.2
Martínez, C.3
Muñiz, K.4
-
27
-
-
84978288281
-
-
E. A. Wappes, S. C. Fosu, T. C. Chopko, D. A. Nagib, Angew. Chem. Int. Ed. 2016, 55, 9974;
-
(2016)
Angew. Chem. Int. Ed.
, vol.55
, pp. 9974
-
-
Wappes, E.A.1
Fosu, S.C.2
Chopko, T.C.3
Nagib, D.A.4
-
28
-
-
85006794365
-
-
Angew. Chem. 2016, 128, 10128;
-
(2016)
Angew. Chem.
, vol.128
, pp. 10128
-
-
-
29
-
-
84929630646
-
-
N. R. Paz, D. Rodríguez-Sosa, H. Valdés, R. Marticorena, D. Melián, M. B. Copano, C. C. González, A. J. Herrera, Org. Lett. 2015, 17, 2370.
-
(2015)
Org. Lett.
, vol.17
, pp. 2370
-
-
Paz, N.R.1
Rodríguez-Sosa, D.2
Valdés, H.3
Marticorena, R.4
Melián, D.5
Copano, M.B.6
González, C.C.7
Herrera, A.J.8
-
30
-
-
85020967991
-
-
For references regarding HAT processes, see
-
For references regarding HAT processes, see:
-
-
-
-
32
-
-
84866068267
-
-
W. Liu, X. Huang, M.-J. Cheng, R. J. Nielsen, W. A. Goddard III, J. T. Groves, Science 2012, 337, 1322;
-
(2012)
Science
, vol.337
, pp. 1322
-
-
Liu, W.1
Huang, X.2
Cheng, M.-J.3
Nielsen, R.J.4
Goddard, W.A.5
Groves, J.T.6
-
33
-
-
84942354069
-
-
J. L. Jeffrey, J. A. Terrett, D. W. C. MacMillan, Science 2015, 349, 1532.
-
(2015)
Science
, vol.349
, pp. 1532
-
-
Jeffrey, J.L.1
Terrett, J.A.2
MacMillan, D.W.C.3
-
35
-
-
85016133083
-
-
G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature 2016, 539, 268;
-
(2016)
Nature
, vol.539
, pp. 268
-
-
Choi, G.J.1
Zhu, Q.2
Miller, D.C.3
Gu, C.J.4
Knowles, R.R.5
-
36
-
-
85010433511
-
-
X.-Q. Hu, J.-R. Chen, W.-J. Xiao, Angew. Chem. Int. Ed. 2017, 56, 1960;
-
(2017)
Angew. Chem. Int. Ed.
, vol.56
, pp. 1960
-
-
Hu, X.-Q.1
Chen, J.-R.2
Xiao, W.-J.3
-
37
-
-
85021001393
-
-
Angew. Chem. 2017, 129, 1988.
-
(2017)
Angew. Chem.
, vol.129
, pp. 1988
-
-
-
38
-
-
85021021084
-
-
For alternative metal-mediated methods for the generation of N-centered radicals, see
-
For alternative metal-mediated methods for the generation of N-centered radicals, see:
-
-
-
-
40
-
-
84967318126
-
-
J.-R. Chen, X.-Q. Hu, L.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Chem. Soc. Rev. 2016, 45, 2044;
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 2044
-
-
Chen, J.-R.1
Hu, X.-Q.2
Hu, L.-Q.3
Lu, L.-Q.4
Xiao, W.-J.5
-
42
-
-
85021038934
-
-
For general concepts for iodine-catalyzed C−H/N−H couplings, see
-
For general concepts for iodine-catalyzed C−H/N−H couplings, see:
-
-
-
-
45
-
-
84944754682
-
-
J. Li, M. J. Lear, Y. Kawamoto, S. Umemiya, A. R. Wong, E. Kwon, I. Sato, Y. Hayashi, Angew. Chem. Int. Ed. 2015, 54, 12986;
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 12986
-
-
Li, J.1
Lear, M.J.2
Kawamoto, Y.3
Umemiya, S.4
Wong, A.R.5
Kwon, E.6
Sato, I.7
Hayashi, Y.8
-
46
-
-
85011348562
-
-
Angew. Chem. 2015, 127, 13178.
-
(2015)
Angew. Chem.
, vol.127
, pp. 13178
-
-
-
47
-
-
19944384941
-
-
C. C. Clark, A. Marton, G. J. Meyer, Inorg. Chem. 2005, 44, 3383;
-
(2005)
Inorg. Chem.
, vol.44
, pp. 3383
-
-
Clark, C.C.1
Marton, A.2
Meyer, G.J.3
-
48
-
-
70450208559
-
-
J. M. Gardner, M. Abrahamsson, B. H. Famum, G. J. Meyer, J. Am. Chem. Soc. 2009, 131, 16206.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 16206
-
-
Gardner, J.M.1
Abrahamsson, M.2
Famum, B.H.3
Meyer, G.J.4
-
54
-
-
85020951083
-
-
The beneficial effect of HFIP might be aiding the protonation of the intermediary hypoiodite species and shifting the disproportionation equilibrium
-
The beneficial effect of HFIP might be aiding the protonation of the intermediary hypoiodite species and shifting the disproportionation equilibrium.
-
-
-
-
55
-
-
85020985488
-
-
Please see the Supporting Information for more experimental details
-
Please see the Supporting Information for more experimental details.
-
-
-
-
56
-
-
85020962383
-
-
In wet media, molecular iodine disproportionates into iodide and hypoiodite, among others; see the Supporting Information for details
-
In wet media, molecular iodine disproportionates into iodide and hypoiodite, among others; see the Supporting Information for details.
-
-
-
-
57
-
-
84904390035
-
-
M. Uyanik, H. Hayashi, K. Ishihara, Science 2014, 345, 291.
-
(2014)
Science
, vol.345
, pp. 291
-
-
Uyanik, M.1
Hayashi, H.2
Ishihara, K.3
-
58
-
-
85020989533
-
-
This is in notable agreement with common stoichiometric Hofmann–Löffler reactions using the analogous hypobromite; see
-
This is in notable agreement with common stoichiometric Hofmann–Löffler reactions using the analogous hypobromite; see:
-
-
-
-
63
-
-
85021007105
-
-
We cannot completely rule out the potential participation of the reduced TPT in the N−I activation step. However, this would only permit a stoichiometric radical recombination from III to IV
-
We cannot completely rule out the potential participation of the reduced TPT in the N−I activation step. However, this would only permit a stoichiometric radical recombination from III to IV.
-
-
-
-
66
-
-
4243943295
-
-
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865;
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
67
-
-
4944232881
-
-
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 1396
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
68
-
-
0001177596
-
-
B. O. Roos, P. R. Taylor, P. E. Siegbahn, Chem. Phys. 1980, 48, 157;
-
(1980)
Chem. Phys.
, vol.48
, pp. 157
-
-
Roos, B.O.1
Taylor, P.R.2
Siegbahn, P.E.3
-
73
-
-
77951680464
-
-
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
-
(2010)
J. Chem. Phys.
, vol.132
, pp. 154104
-
-
Grimme, S.1
Antony, J.2
Ehrlich, S.3
Krieg, H.4
-
76
-
-
84988310768
-
-
In agreement with our presented calculations, the previous limitation on sulfonamides, is therefore not due to the potential role of this group as a photosensitizer. For a discussion of the nature of amides and their amidoyl radicals in Hofmann–Löffler reactions, see
-
In agreement with our presented calculations, the previous limitation on sulfonamides[6] is therefore not due to the potential role of this group as a photosensitizer. For a discussion of the nature of amides and their amidoyl radicals in Hofmann–Löffler reactions, see: D. Šakić, H. Zipse, Adv. Synth. Catal. 2016, 358, 3983.
-
(2016)
Adv. Synth. Catal.
, vol.358
, pp. 3983
-
-
Šakić, D.1
Zipse, H.2
|