메뉴 건너뛰기




Volumn 312, Issue 6, 2017, Pages H1185-H1194

Arterial viscoelasticity: Role in the dependency of pulse wave velocity on heart rate in conduit arteries

Author keywords

Arterial stiffness; Heart rate; Pulse wave velocity; Transmission line model; Viscoelasticity

Indexed keywords

AORTA; ARTERIAL STIFFNESS; ARTERIAL VISCOELASTICITY; ARTERY; ARTICLE; ASCENDING AORTA; BLOOD PRESSURE; FEMORAL ARTERY; HEART RATE; HUMAN; PRIORITY JOURNAL; PULSE WAVE; TIBIAL ARTERY; VISCOELASTICITY; WAVEFORM; ADAPTATION; ANATOMY AND HISTOLOGY; BIOLOGICAL MODEL; BLOOD FLOW; BLOOD FLOW VELOCITY; ELASTICITY; PHYSIOLOGY; THORACIC AORTA; TIME FACTOR; VISCOSITY;

EID: 85020069984     PISSN: 03636135     EISSN: 15221539     Source Type: Journal    
DOI: 10.1152/ajpheart.00849.2016     Document Type: Article
Times cited : (43)

References (40)
  • 1
    • 2442562118 scopus 로고    scopus 로고
    • An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasilinear viscoelastic theory
    • Abramowitch SD, Woo SLY. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasilinear viscoelastic theory. J Biomech Eng 126: 92-97, 2004. doi:10.1115/1.1645528.
    • (2004) J Biomech Eng , vol.126 , pp. 92-97
    • Abramowitch, S.D.1    Woo, S.L.Y.2
  • 2
    • 67649726124 scopus 로고    scopus 로고
    • Analysing the pattern of pulse waves in arterial networks: A time-domain study
    • Alastruey J, Parker KH, Peiro J, Sherwin SJ. Analysing the pattern of pulse waves in arterial networks: a time-domain study. J Eng Math 64: 331-351, 2009. doi:10.1007/s10665-009-9275-1.
    • (2009) J Eng Math , vol.64 , pp. 331-351
    • Alastruey, J.1    Parker, K.H.2    Peiro, J.3    Sherwin, S.J.4
  • 3
    • 0019079690 scopus 로고
    • Multi-branched model of the human arterial system
    • Avolio AP. Multi-branched model of the human arterial system. Med Biol Eng Comput 18: 709-718, 1980. doi:10.1007/BF02441895.
    • (1980) Med Biol Eng Comput , vol.18 , pp. 709-718
    • Avolio, A.P.1
  • 4
    • 0000127622 scopus 로고
    • The dynamic elastic properties of the arterial wall
    • Bergel DH. The dynamic elastic properties of the arterial wall. J Physiol 156: 458-469, 1961. doi:10.1113/jphysiol.1961.sp006687.
    • (1961) J Physiol , vol.156 , pp. 458-469
    • Bergel, D.H.1
  • 5
    • 0030970060 scopus 로고    scopus 로고
    • Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function
    • Chen CH, Nevo E, Fetics B, Pak PH, Yin FCP, Maughan WL, Kass DA. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation 95: 1827-1836, 1997. doi:10.1161/01.CIR.95.7.1827.
    • (1997) Circulation , vol.95 , pp. 1827-1836
    • Chen, C.H.1    Nevo, E.2    Fetics, B.3    Pak, P.H.4    Yin, F.5    Maughan, W.L.6    Kass, D.A.7
  • 6
    • 0025763193 scopus 로고
    • Determination of pulse wave velocities with computerized algorithms
    • Chiu YC, Arand PW, Shroff SG, Feldman T, Carroll JD. Determination of pulse wave velocities with computerized algorithms. Am Heart J 121: 1460-1470, 1991. doi:10.1016/0002-8703(91)90153-9.
    • (1991) Am Heart J , vol.121 , pp. 1460-1470
    • Chiu, Y.C.1    Arand, P.W.2    Shroff, S.G.3    Feldman, T.4    Carroll, J.D.5
  • 7
    • 37149033452 scopus 로고    scopus 로고
    • A fractional derivative model to describe arterial viscoelasticity
    • Craiem D, Armentano RL. A fractional derivative model to describe arterial viscoelasticity. Biorheology 44: 251-263, 2007.
    • (2007) Biorheology , vol.44 , pp. 251-263
    • Craiem, D.1    Armentano, R.L.2
  • 8
    • 51849148014 scopus 로고    scopus 로고
    • Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries
    • Craiem D, Rojo FJ, Atienza JM, Armentano RL, Guinea GV. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys Med Biol 53: 4543-4554, 2008. doi:10.1088/0031-9155/53/17/006.
    • (2008) Phys Med Biol , vol.53 , pp. 4543-4554
    • Craiem, D.1    Rojo, F.J.2    Atienza, J.M.3    Armentano, R.L.4    Guinea, G.V.5
  • 10
    • 23644445170 scopus 로고    scopus 로고
    • Fractional order viscoelasticity of the aortic valve cusp: An alternative to quasilinear viscoelasticity
    • Doehring TC, Freed AD, Carew EO, Vesely I. Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J Biomech Eng 127: 700-708, 2005. doi:10.1115/1.1933900.
    • (2005) J Biomech Eng , vol.127 , pp. 700-708
    • Doehring, T.C.1    Freed, A.D.2    Carew, E.O.3    Vesely, I.4
  • 11
    • 0004054850 scopus 로고
    • Huntington, NY: Robert E. Krieger Publishing
    • Eringen AC. Mechanics of Continua. Huntington, NY: Robert E. Krieger Publishing, 1980, p. 1.
    • (1980) Mechanics of Continua , pp. 1
    • Eringen, A.C.1
  • 13
    • 0038796601 scopus 로고    scopus 로고
    • Terminology for describing the elastic behavior of arteries
    • Gosling RG, Budge MM. Terminology for describing the elastic behavior of arteries. Hypertension 41: 1180-1182, 2003. doi:10.1161/01.HYP.0000072271.36866.2A.
    • (2003) Hypertension , vol.41 , pp. 1180-1182
    • Gosling, R.G.1    Budge, M.M.2
  • 14
    • 84859357688 scopus 로고    scopus 로고
    • Numerical simulation of human systemic arterial hemodynamics based on a transmission line model and recursive algorithm
    • He W, Xiao HG, Liu XH. Numerical simulation of human systemic arterial hemodynamics based on a transmission line model and recursive algorithm. J Mech Med Biol 12: 1250021-1250019, 2012. doi:10.1142/S0219519411004587.
    • (2012) J Mech Med Biol , vol.12
    • He, W.1    Xiao, H.G.2    Liu, X.H.3
  • 15
    • 2942738746 scopus 로고    scopus 로고
    • Forward electrical transmission line model of the human arterial system
    • John LR. Forward electrical transmission line model of the human arterial system. Med Biol Eng Comput 42: 312-321, 2004. doi:10.1007/BF02344705.
    • (2004) Med Biol Eng Comput , vol.42 , pp. 312-321
    • John, L.R.1
  • 16
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
    • Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput Math Appl 51: 1367-1376, 2006. doi:10.1016/j.camwa.2006.02.001.
    • (2006) Comput Math Appl , vol.51 , pp. 1367-1376
    • Jumarie, G.1
  • 17
    • 0036278324 scopus 로고    scopus 로고
    • Heart rate: An important confounder of pulse wave velocity assessment
    • Lantelme P, Mestre C, Lievre M, Gressard A, Milon H. Heart rate: an important confounder of pulse wave velocity assessment. Hypertension 39: 1083-1087, 2002. doi:10.1161/01.HYP.0000019132.41066.95.
    • (2002) Hypertension , vol.39 , pp. 1083-1087
    • Lantelme, P.1    Mestre, C.2    Lievre, M.3    Gressard, A.4    Milon, H.5
  • 18
    • 0013887788 scopus 로고
    • Alterations with age in the viscoelastic properties of human arterial walls
    • Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 18: 278-292, 1966. doi:10.1161/01.RES.18.3.278.
    • (1966) Circ Res , vol.18 , pp. 278-292
    • Learoyd, B.M.1    Taylor, M.G.2
  • 19
    • 67349237758 scopus 로고    scopus 로고
    • Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses
    • Liang F, Takagi S, Himeno R, Liu H. Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med Biol Eng Comput 47: 743-755, 2009. doi:10.1007/s11517-009-0449-9.
    • (2009) Med Biol Eng Comput , vol.47 , pp. 743-755
    • Liang, F.1    Takagi, S.2    Himeno, R.3    Liu, H.4
  • 20
    • 0142139178 scopus 로고    scopus 로고
    • Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon
    • Lynch HA, Johannessen W, Wu JP, Jawa A, Elliott DM. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J Biomech Eng 125: 726-731, 2003. doi:10.1115/1.1614819.
    • (2003) J Biomech Eng , vol.125 , pp. 726-731
    • Lynch, H.A.1    Johannessen, W.2    Wu, J.P.3    Jawa, A.4    Elliott, D.M.5
  • 22
    • 0031240067 scopus 로고    scopus 로고
    • Characterization of passive embryonic myocardium by quasi-linear viscoelasticity theory
    • Miller CE, Vanni MA, Keller BB. Characterization of passive embryonic myocardium by quasi-linear viscoelasticity theory. J Biomech 30: 985-988, 1997. doi:10.1016/S0021-9290(97)00048-1.
    • (1997) J Biomech , vol.30 , pp. 985-988
    • Miller, C.E.1    Vanni, M.A.2    Keller, B.B.3
  • 24
    • 1542360025 scopus 로고    scopus 로고
    • Left ventricular ejection time: A potential determinant of pulse wave velocity in young, healthy males
    • Nürnberger J, Opazo Saez A, Dammer S, Mitchell A, Wenzel RR, Philipp T, Schäfers RF. Left ventricular ejection time: a potential determinant of pulse wave velocity in young, healthy males. J Hypertens 21: 2125-2132, 2003. doi:10.1097/00004872-200311000-00022.
    • (2003) J Hypertens , vol.21 , pp. 2125-2132
    • Nürnberger, J.1    Opazo Saez, A.2    Dammer, S.3    Mitchell, A.4    Wenzel, R.R.5    Philipp, T.6    Schäfers, R.F.7
  • 25
    • 84930762485 scopus 로고    scopus 로고
    • Modeling the arterial wall mechanics using a novel high-order viscoelastic fractional element
    • Pérez Zerpa JM, Canelas A, Sensale B, Bia Santana D, Armentano RL. Modeling the arterial wall mechanics using a novel high-order viscoelastic fractional element. Appl Math Model 39: 4767-4780, 2015. doi:10.1016/j.apm.2015.04.018.
    • (2015) Appl Math Model , vol.39 , pp. 4767-4780
    • Pérez Zerpa, J.M.1    Canelas, A.2    Sensale, B.3    Bia Santana, D.4    Armentano, R.L.5
  • 26
    • 84898545946 scopus 로고    scopus 로고
    • Fractional-order viscoelasticity in onedimensional blood flow models
    • Perdikaris P, Karniadakis GE. Fractional-order viscoelasticity in onedimensional blood flow models. Ann Biomed Eng 42: 1012-1023, 2014. doi:10.1007/s10439-014-0970-3.
    • (2014) Ann Biomed Eng , vol.42 , pp. 1012-1023
    • Perdikaris, P.1    Karniadakis, G.E.2
  • 28
    • 84890384771 scopus 로고    scopus 로고
    • Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity
    • Salvi P, Palombo C, Salvi GM, Labat C, Parati G, Benetos A. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity. J Appl Physiol 115: 1610-1617, 2013. doi:10.1152/japplphysiol.00475.2013.
    • (2013) J Appl Physiol , vol.115 , pp. 1610-1617
    • Salvi, P.1    Palombo, C.2    Salvi, G.M.3    Labat, C.4    Parati, G.5    Benetos, A.6
  • 30
    • 0027006820 scopus 로고
    • Computer simulation of arterial flow with applications to arterial and aortic stenoses
    • Stergiopulos N, Young DF, Rogge TR. Computer simulation of arterial flow with applications to arterial and aortic stenoses. J Biomech 25: 1477-1488, 1992. doi:10.1016/0021-9290(92)90060-E.
    • (1992) J Biomech , vol.25 , pp. 1477-1488
    • Stergiopulos, N.1    Young, D.F.2    Rogge, T.R.3
  • 31
    • 84864278037 scopus 로고    scopus 로고
    • Heart rate dependence of aortic pulse wave velocity at different arterial pressures in rats
    • Tan I, Butlin M, Liu YY, Ng K, Avolio AP. Heart rate dependence of aortic pulse wave velocity at different arterial pressures in rats. Hypertension 60: 528-533, 2012. doi:10.1161/HYPERTENSIONAHA.112.194225.
    • (2012) Hypertension , vol.60 , pp. 528-533
    • Tan, I.1    Butlin, M.2    Liu, Y.Y.3    Ng, K.4    Avolio, A.P.5
  • 34
    • 0942305100 scopus 로고    scopus 로고
    • Wave propagation in a model of the arterial circulation
    • Wang JJ, Parker KH. Wave propagation in a model of the arterial circulation. J Biomech 37: 457-470, 2004. doi:10.1016/j.jbiomech.2003.09.007.
    • (2004) J Biomech , vol.37 , pp. 457-470
    • Wang, J.J.1    Parker, K.H.2
  • 35
    • 0014250553 scopus 로고
    • Systolic time intervals in heart failure in man
    • Weissler AM, Harris WS, Schoenfeld CD. Systolic time intervals in heart failure in man. Circulation 37: 149-159, 1968. doi:10.1161/01.CIR.37.2.149.
    • (1968) Circulation , vol.37 , pp. 149-159
    • Weissler, A.M.1    Harris, W.S.2    Schoenfeld, C.D.3
  • 36
    • 0000770468 scopus 로고
    • Analog studies of the human systemic arterial tree
    • Westerhof N, Bosman F, De Vries CJ, Noordergraaf A. Analog studies of the human systemic arterial tree. J Biomech 2: 121-143, 1969. doi:10.1016/0021-9290(69)90024-4.
    • (1969) J Biomech , vol.2 , pp. 121-143
    • Westerhof, N.1    Bosman, F.2    De Vries, C.J.3    Noordergraaf, A.4
  • 37
    • 0014777463 scopus 로고
    • Arterial viscoelasticity: A generalized model. Effect on input impedance and wave travel in the systematic tree
    • Westerhof N, Noordergraaf A. Arterial viscoelasticity: a generalized model. Effect on input impedance and wave travel in the systematic tree. J Biomech 3: 357-379, 1970. doi:10.1016/0021-9290(70)90036-9.
    • (1970) J Biomech , vol.3 , pp. 357-379
    • Westerhof, N.1    Noordergraaf, A.2
  • 38
    • 84895880342 scopus 로고    scopus 로고
    • Numerical simulation and validity of a novel method for the prediction of artery stenosis via input impedance and support vector machine
    • Xiao H. Numerical simulation and validity of a novel method for the prediction of artery stenosis via input impedance and support vector machine. Biomed Eng Appl Basis Commun 26: 1450002, 2014. doi:10.4015/S1016237214500021.
    • (2014) Biomed Eng Appl Basis Commun , vol.26
    • Xiao, H.1
  • 39
    • 84961838036 scopus 로고    scopus 로고
    • A novel method of artery stenosis diagnosis using transfer function and support vector machine based on transmission line model: A numerical simulation and validation study
    • Xiao H, Avolio A, Huang D. A novel method of artery stenosis diagnosis using transfer function and support vector machine based on transmission line model: a numerical simulation and validation study. Comput Methods Programs Biomed 129: 71-81, 2016. doi:10.1016/j.cmpb.2016.03.005.
    • (2016) Comput Methods Programs Biomed , vol.129 , pp. 71-81
    • Xiao, H.1    Avolio, A.2    Huang, D.3
  • 40
    • 84945545797 scopus 로고    scopus 로고
    • Modeling and hemodynamic simulation of human arterial stenosis via transmission line model
    • Xiao H, Avolio A, Zhao M. Modeling and hemodynamic simulation of human arterial stenosis via transmission line model. J Mech Med Biol 16: 1650067, 2016. doi:10.1142/S0219519416500676.
    • (2016) J Mech Med Biol , vol.16
    • Xiao, H.1    Avolio, A.2    Zhao, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.