-
1
-
-
84890460571
-
Development and evaluation of a field-based high-throughput phenotyping platform
-
Andrade-Sanchez P, Gore MA, Heun JT, et al. Development and evaluation of a field-based high-throughput phenotyping platform. Funct Plant Biol. 2014;41(1):68–79.
-
(2014)
Funct Plant Biol
, vol.41
, Issue.1
, pp. 68-79
-
-
Andrade-Sanchez, P.1
Gore, M.A.2
Heun, J.T.3
-
2
-
-
84891372768
-
Field high-throughput phenotyping: The new crop breeding frontier
-
Araus JL, Cairns JE. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014;19(1):52–61.
-
(2014)
Trends Plant Sci
, vol.19
, Issue.1
, pp. 52-61
-
-
Araus, J.L.1
Cairns, J.E.2
-
3
-
-
85027374913
-
-
. Patrick World Class Facility at Port Botany., [Accessed 2016-03-04]
-
Asciano (2016). Patrick: World Class Facility at Port Botany. http://asciano.com.au/case_studies/world-class-facility-at-port-botany. [Accessed 2016-03-04].
-
(2016)
-
-
-
5
-
-
85027306880
-
-
[Accessed 2016-03-03]
-
Australian Plant Phenomics Facility (2016). The Plant Accelerator (high-throughput phenotyping). http://www.plantphenomics.org.au/services/accelerator/. [Accessed 2016-03-03].
-
(2016)
The Plant Accelerator (high-throughput phenotyping).
-
-
-
6
-
-
84958208503
-
Robotics for sustainable broad-acre agriculture
-
In, Springer
-
Ball D, Ross P, English A, et al. Robotics for sustainable broad-acre agriculture. In: Field and Service Robotics. Springer, 2015:439–453.
-
(2015)
Field and Service Robotics
, pp. 439-453
-
-
Ball, D.1
Ross, P.2
English, A.3
-
7
-
-
85027307544
-
Vision-based row detection algorithms evaluation for weeding cultivator guidance in lentil
-
Behfar H, Ghasemzadeh H, Rostami A, Seyedarabi M, Moghaddam M. Vision-based row detection algorithms evaluation for weeding cultivator guidance in lentil. Modern Appl Sci. 2014;8(5):224.
-
(2014)
Modern Appl Sci.
, vol.8
, Issue.5
, pp. 224
-
-
Behfar, H.1
Ghasemzadeh, H.2
Rostami, A.3
Seyedarabi, M.4
Moghaddam, M.5
-
8
-
-
85027320734
-
-
. BoniRob., [Accessed 2016-10-27]
-
Bosch Deepfield Robotics (2016). BoniRob. https://www.deepfield-robotics.com/en/BoniRob.html. [Accessed 2016-10-27].
-
(2016)
-
-
-
9
-
-
84875159589
-
Breedvision: A multi-sensor platform for non-destructive field-based phenotyping in plant breeding
-
Busemeyer L, Mentrup D, Möller K, et al. Breedvision: A multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors. 2013;13(3):2830–2847.
-
(2013)
Sensors
, vol.13
, Issue.3
, pp. 2830-2847
-
-
Busemeyer, L.1
Mentrup, D.2
Möller, K.3
-
10
-
-
84923012445
-
Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping
-
Chapman SC, Merz T, Chan A, et al. Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy. 2014;4(2):279–301.
-
(2014)
Agronomy
, vol.4
, Issue.2
, pp. 279-301
-
-
Chapman, S.C.1
Merz, T.2
Chan, A.3
-
11
-
-
84884637261
-
Agricultural robotics: Unmanned robotic service units in agricultural tasks
-
Cheein FAA, Carelli R. Agricultural robotics: Unmanned robotic service units in agricultural tasks. IEEE Indust Electron Mag. 2013;7(3):48–58.
-
(2013)
IEEE Indust Electron Mag
, vol.7
, Issue.3
, pp. 48-58
-
-
Cheein, F.A.A.1
Carelli, R.2
-
12
-
-
84875426911
-
Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement
-
Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genetics. 2013;126(4):867–887.
-
(2013)
Theor Appl Genetics
, vol.126
, Issue.4
, pp. 867-887
-
-
Cobb, J.N.1
DeClerck, G.2
Greenberg, A.3
Clark, R.4
McCouch, S.5
-
13
-
-
84868707545
-
A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: Description and first results
-
Comar A, Burger P, de Solan B, Baret F, Daumard F, Hanocq J.-F. A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: Description and first results. Funct Plant Biol. 2012;39(11):914–924.
-
(2012)
Funct Plant Biol
, vol.39
, Issue.11
, pp. 914-924
-
-
Comar, A.1
Burger, P.2
de Solan, B.3
Baret, F.4
Daumard, F.5
Hanocq, J.-F.6
-
14
-
-
84908509157
-
Proximal remote sensing buggies and potential applications for field-based phenotyping
-
Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy. 2014;4(3):349–379.
-
(2014)
Agronomy
, vol.4
, Issue.3
, pp. 349-379
-
-
Deery, D.1
Jimenez-Berni, J.2
Jones, H.3
Sirault, X.4
Furbank, R.5
-
15
-
-
33847336020
-
Analytic solution for separating spectra into illumination and surface reflectance components
-
Drew MS, Finlayson, GD. Analytic solution for separating spectra into illumination and surface reflectance components. JOSA A. 2007;24(2):294–303.
-
(2007)
JOSA A
, vol.24
, Issue.2
, pp. 294-303
-
-
Drew, M.S.1
Finlayson, G.D.2
-
16
-
-
84929206727
-
Vision based guidance for robot navigation in agriculture
-
In, pages. IEEE
-
English A, Ross P, Ball D, Corke P. Vision based guidance for robot navigation in agriculture. In: Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 1693–1698. IEEE, 2014.
-
(2014)
Robotics and Automation (ICRA), 2014 IEEE International Conference on
, pp. 1693-1698
-
-
English, A.1
Ross, P.2
Ball, D.3
Corke, P.4
-
17
-
-
85027315409
-
-
[Accessed 2016-03-03]
-
European Plant Phenotyping Network (2016). Home. http://www.plant-phenotyping-network.eu/eppn/home. [Accessed 2016-03-03].
-
(2016)
Home
-
-
-
18
-
-
0030336504
-
Sample quantiles in statistical packages
-
Hyndman RJ, Fan Y. Sample quantiles in statistical packages. Am Stat. 1996;50(4):361–365.
-
(1996)
Am Stat
, vol.50
, Issue.4
, pp. 361-365
-
-
Hyndman, R.J.1
Fan, Y.2
-
19
-
-
84887566023
-
The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity
-
Kipp S, Mistele B, Schmidhalter U. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity. Comput Electron Agric. 2014;100:24–33.
-
(2014)
Comput Electron Agric
, vol.100
, pp. 24-33
-
-
Kipp, S.1
Mistele, B.2
Schmidhalter, U.3
-
20
-
-
85042403979
-
-
[Accessed 2016-03-03]
-
Lemnatec (2016). Products. http://www.lemnatec.com/products/. [Accessed 2016-03-03].
-
(2016)
Products
-
-
-
21
-
-
84859058257
-
Laboratory evaluation of the GreenSeeker handheld optical sensor to variations in orientation and height above canopy
-
Martin DE, López Jr JD, Lan Y. Laboratory evaluation of the GreenSeeker handheld optical sensor to variations in orientation and height above canopy. Int J Agric Biol Eng. 2012;5(1):43–47.
-
(2012)
Int J Agric Biol Eng
, vol.5
, Issue.1
, pp. 43-47
-
-
Martin, D.E.1
López, J.J.D.2
Lan, Y.3
-
22
-
-
79951578277
-
High-throughput non-destructive biomass determination during early plant development in maize under field conditions
-
Montes J, Technow F, Dhillon B, Mauch F, Melchinger A. High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crops Res. 2011;121(2):268–273.
-
(2011)
Field Crops Res
, vol.121
, Issue.2
, pp. 268-273
-
-
Montes, J.1
Technow, F.2
Dhillon, B.3
Mauch, F.4
Melchinger, A.5
-
23
-
-
79952311576
-
Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops
-
Moshou D, Bravo C, Oberti R, et al. Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosyst Eng. 2011;108(4):311–321.
-
(2011)
Biosyst Eng
, vol.108
, Issue.4
, pp. 311-321
-
-
Moshou, D.1
Bravo, C.2
Oberti, R.3
-
24
-
-
0023331286
-
Vision-based guidance of an agriculture tractor
-
Reid JF, Searcy SW. Vision-based guidance of an agriculture tractor. IEEE Control Syst Mag. 1987;7(2):39–43.
-
(1987)
IEEE Control Syst Mag
, vol.7
, Issue.2
, pp. 39-43
-
-
Reid, J.F.1
Searcy, S.W.2
-
25
-
-
84866990032
-
Towards autonomous agriculture: Automatic ground detection using trinocular stereovision
-
Reina G, Milella A. Towards autonomous agriculture: Automatic ground detection using trinocular stereovision. Sensors. 2012;12(9):12405–12423.
-
(2012)
Sensors
, vol.12
, Issue.9
, pp. 12405-12423
-
-
Reina, G.1
Milella, A.2
-
26
-
-
84885662650
-
Bonirob–an autonomous field robot platform for individual plant phenotyping
-
Ruckelshausen A, Biber P, Dorna M, et al. Bonirob–an autonomous field robot platform for individual plant phenotyping. Precis Agric. 2009;9(841):1.
-
(2009)
Precis Agric
, vol.9
, Issue.841
, pp. 1
-
-
Ruckelshausen, A.1
Biber, P.2
Dorna, M.3
-
27
-
-
84912093409
-
A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles
-
Suomalainen J, Anders N, Iqbal S, et al. A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles. Remote Sens. 2014;6(11):11013–11030.
-
(2014)
Remote Sens
, vol.6
, Issue.11
, pp. 11013-11030
-
-
Suomalainen, J.1
Anders, N.2
Iqbal, S.3
-
30
-
-
85030985515
-
Real-time target detection and steerable spray for vegetable crops
-
In, Workshop on Robotics in Agriculture at Intelligent Robots and Systems (IROS), IEEE, 2015
-
Underwood JP, Calleija M, Taylor Z, et al. Real-time target detection and steerable spray for vegetable crops. In Workshop on Robotics in Agriculture at Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2015.
-
(2015)
2013 IEEE/RSJ International Conference on
-
-
Underwood, J.P.1
Calleija, M.2
Taylor, Z.3
-
31
-
-
75749148780
-
Error modeling and calibration of exteroceptive sensors for accurate mapping applications
-
Underwood JP, Hill A, Peynot T, Scheding SJ. Error modeling and calibration of exteroceptive sensors for accurate mapping applications. J Field Robotics. 2010;27(1):2–20.
-
(2010)
J Field Robotics
, vol.27
, Issue.1
, pp. 2-20
-
-
Underwood, J.P.1
Hill, A.2
Peynot, T.3
Scheding, S.J.4
-
32
-
-
85027353355
-
-
[Accessed 2016-03-03]
-
We Prove Solutions (2016). Overview Products: Plant Phenotyping. http://www.wps.eu/en/plant-phenotyping/overview-products-plant-phenotyp%ing. [Accessed 2016-03-03].
-
(2016)
Overview Products: Plant Phenotyping
-
-
-
33
-
-
79955633355
-
Plant detection and mapping for agricultural robots using a 3d lidar sensor
-
Weiss U, Biber P. Plant detection and mapping for agricultural robots using a 3d lidar sensor. Robotics and autonomous systems. 2011;59(5):265–273.
-
(2011)
Robotics and autonomous systems
, vol.59
, Issue.5
, pp. 265-273
-
-
Weiss, U.1
Biber, P.2
-
34
-
-
85019067900
-
Illumination compensation in ground based hyperspectral imaging
-
Wendel A, Underwood J. Illumination compensation in ground based hyperspectral imaging. ISPRS J Photogramm Remote Sens. 2017;129:162–178.
-
(2017)
ISPRS J Photogramm Remote Sens
, vol.129
, pp. 162-178
-
-
Wendel, A.1
Underwood, J.2
-
35
-
-
85027306674
-
-
. Percentile., [Accessed 2016-03-07]
-
Wikipedia (2016). Percentile. https://en.wikipedia.org/wiki/Percentile. [Accessed 2016-03-07].
-
(2016)
-
-
-
36
-
-
44749088075
-
Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation
-
Wu C, Niu Z, Tang Q, Huang W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric Forest Meteorol. 2008;148(8):1230–1241.
-
(2008)
Agric Forest Meteorol
, vol.148
, Issue.8
, pp. 1230-1241
-
-
Wu, C.1
Niu, Z.2
Tang, Q.3
Huang, W.4
-
37
-
-
84864686779
-
Spectral preprocessing and calibration techniques
-
In, Sun D-W, ed., San Diego, Academic Press
-
Yao H, Lewis D. Spectral preprocessing and calibration techniques. In: Sun D-W, ed. Hyperspectral Imaging for Food Quality Analysis and Control. San Diego: Academic Press; 2010:45–78.
-
(2010)
Hyperspectral Imaging for Food Quality Analysis and Control
, pp. 45-78
-
-
Yao, H.1
Lewis, D.2
|