메뉴 건너뛰기




Volumn 34, Issue 6, 2017, Pages 1061-1083

Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle

Author keywords

agriculture; hyperspectral and lidar sensing; plant phenomics; row crop phenotyping; terrestrial robotics

Indexed keywords

AGRICULTURE; CROPS; DATA ACQUISITION; DATA HANDLING; FORESTRY; GROUND VEHICLES;

EID: 85019743693     PISSN: 15564959     EISSN: 15564967     Source Type: Journal    
DOI: 10.1002/rob.21728     Document Type: Article
Times cited : (79)

References (37)
  • 1
    • 84890460571 scopus 로고    scopus 로고
    • Development and evaluation of a field-based high-throughput phenotyping platform
    • Andrade-Sanchez P, Gore MA, Heun JT, et al. Development and evaluation of a field-based high-throughput phenotyping platform. Funct Plant Biol. 2014;41(1):68–79.
    • (2014) Funct Plant Biol , vol.41 , Issue.1 , pp. 68-79
    • Andrade-Sanchez, P.1    Gore, M.A.2    Heun, J.T.3
  • 2
    • 84891372768 scopus 로고    scopus 로고
    • Field high-throughput phenotyping: The new crop breeding frontier
    • Araus JL, Cairns JE. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014;19(1):52–61.
    • (2014) Trends Plant Sci , vol.19 , Issue.1 , pp. 52-61
    • Araus, J.L.1    Cairns, J.E.2
  • 3
    • 85027374913 scopus 로고    scopus 로고
    • . Patrick World Class Facility at Port Botany., [Accessed 2016-03-04]
    • Asciano (2016). Patrick: World Class Facility at Port Botany. http://asciano.com.au/case_studies/world-class-facility-at-port-botany. [Accessed 2016-03-04].
    • (2016)
  • 5
    • 85027306880 scopus 로고    scopus 로고
    • [Accessed 2016-03-03]
    • Australian Plant Phenomics Facility (2016). The Plant Accelerator (high-throughput phenotyping). http://www.plantphenomics.org.au/services/accelerator/.  [Accessed 2016-03-03].
    • (2016) The Plant Accelerator (high-throughput phenotyping).
  • 6
    • 84958208503 scopus 로고    scopus 로고
    • Robotics for sustainable broad-acre agriculture
    • In, Springer
    • Ball D, Ross P, English A, et al. Robotics for sustainable broad-acre agriculture. In: Field and Service Robotics. Springer, 2015:439–453.
    • (2015) Field and Service Robotics , pp. 439-453
    • Ball, D.1    Ross, P.2    English, A.3
  • 7
    • 85027307544 scopus 로고    scopus 로고
    • Vision-based row detection algorithms evaluation for weeding cultivator guidance in lentil
    • Behfar H, Ghasemzadeh H, Rostami A, Seyedarabi M, Moghaddam M. Vision-based row detection algorithms evaluation for weeding cultivator guidance in lentil. Modern Appl Sci. 2014;8(5):224.
    • (2014) Modern Appl Sci. , vol.8 , Issue.5 , pp. 224
    • Behfar, H.1    Ghasemzadeh, H.2    Rostami, A.3    Seyedarabi, M.4    Moghaddam, M.5
  • 8
    • 85027320734 scopus 로고    scopus 로고
    • . BoniRob., [Accessed 2016-10-27]
    • Bosch Deepfield Robotics (2016). BoniRob. https://www.deepfield-robotics.com/en/BoniRob.html. [Accessed 2016-10-27].
    • (2016)
  • 9
    • 84875159589 scopus 로고    scopus 로고
    • Breedvision: A multi-sensor platform for non-destructive field-based phenotyping in plant breeding
    • Busemeyer L, Mentrup D, Möller K, et al. Breedvision: A multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors. 2013;13(3):2830–2847.
    • (2013) Sensors , vol.13 , Issue.3 , pp. 2830-2847
    • Busemeyer, L.1    Mentrup, D.2    Möller, K.3
  • 10
    • 84923012445 scopus 로고    scopus 로고
    • Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping
    • Chapman SC, Merz T, Chan A, et al. Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy. 2014;4(2):279–301.
    • (2014) Agronomy , vol.4 , Issue.2 , pp. 279-301
    • Chapman, S.C.1    Merz, T.2    Chan, A.3
  • 11
    • 84884637261 scopus 로고    scopus 로고
    • Agricultural robotics: Unmanned robotic service units in agricultural tasks
    • Cheein FAA, Carelli R. Agricultural robotics: Unmanned robotic service units in agricultural tasks. IEEE Indust Electron Mag. 2013;7(3):48–58.
    • (2013) IEEE Indust Electron Mag , vol.7 , Issue.3 , pp. 48-58
    • Cheein, F.A.A.1    Carelli, R.2
  • 12
    • 84875426911 scopus 로고    scopus 로고
    • Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement
    • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genetics. 2013;126(4):867–887.
    • (2013) Theor Appl Genetics , vol.126 , Issue.4 , pp. 867-887
    • Cobb, J.N.1    DeClerck, G.2    Greenberg, A.3    Clark, R.4    McCouch, S.5
  • 13
    • 84868707545 scopus 로고    scopus 로고
    • A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: Description and first results
    • Comar A, Burger P, de Solan B, Baret F, Daumard F, Hanocq J.-F. A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: Description and first results. Funct Plant Biol. 2012;39(11):914–924.
    • (2012) Funct Plant Biol , vol.39 , Issue.11 , pp. 914-924
    • Comar, A.1    Burger, P.2    de Solan, B.3    Baret, F.4    Daumard, F.5    Hanocq, J.-F.6
  • 14
    • 84908509157 scopus 로고    scopus 로고
    • Proximal remote sensing buggies and potential applications for field-based phenotyping
    • Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy. 2014;4(3):349–379.
    • (2014) Agronomy , vol.4 , Issue.3 , pp. 349-379
    • Deery, D.1    Jimenez-Berni, J.2    Jones, H.3    Sirault, X.4    Furbank, R.5
  • 15
    • 33847336020 scopus 로고    scopus 로고
    • Analytic solution for separating spectra into illumination and surface reflectance components
    • Drew MS, Finlayson, GD. Analytic solution for separating spectra into illumination and surface reflectance components. JOSA A. 2007;24(2):294–303.
    • (2007) JOSA A , vol.24 , Issue.2 , pp. 294-303
    • Drew, M.S.1    Finlayson, G.D.2
  • 17
    • 85027315409 scopus 로고    scopus 로고
    • [Accessed 2016-03-03]
    • European Plant Phenotyping Network (2016). Home. http://www.plant-phenotyping-network.eu/eppn/home. [Accessed 2016-03-03].
    • (2016) Home
  • 18
    • 0030336504 scopus 로고    scopus 로고
    • Sample quantiles in statistical packages
    • Hyndman RJ, Fan Y. Sample quantiles in statistical packages. Am Stat. 1996;50(4):361–365.
    • (1996) Am Stat , vol.50 , Issue.4 , pp. 361-365
    • Hyndman, R.J.1    Fan, Y.2
  • 19
    • 84887566023 scopus 로고    scopus 로고
    • The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity
    • Kipp S, Mistele B, Schmidhalter U. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity. Comput Electron Agric. 2014;100:24–33.
    • (2014) Comput Electron Agric , vol.100 , pp. 24-33
    • Kipp, S.1    Mistele, B.2    Schmidhalter, U.3
  • 20
    • 85042403979 scopus 로고    scopus 로고
    • [Accessed 2016-03-03]
    • Lemnatec (2016). Products. http://www.lemnatec.com/products/. [Accessed 2016-03-03].
    • (2016) Products
  • 21
    • 84859058257 scopus 로고    scopus 로고
    • Laboratory evaluation of the GreenSeeker handheld optical sensor to variations in orientation and height above canopy
    • Martin DE, López Jr JD, Lan Y. Laboratory evaluation of the GreenSeeker handheld optical sensor to variations in orientation and height above canopy. Int J Agric Biol Eng. 2012;5(1):43–47.
    • (2012) Int J Agric Biol Eng , vol.5 , Issue.1 , pp. 43-47
    • Martin, D.E.1    López, J.J.D.2    Lan, Y.3
  • 22
    • 79951578277 scopus 로고    scopus 로고
    • High-throughput non-destructive biomass determination during early plant development in maize under field conditions
    • Montes J, Technow F, Dhillon B, Mauch F, Melchinger A. High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crops Res. 2011;121(2):268–273.
    • (2011) Field Crops Res , vol.121 , Issue.2 , pp. 268-273
    • Montes, J.1    Technow, F.2    Dhillon, B.3    Mauch, F.4    Melchinger, A.5
  • 23
    • 79952311576 scopus 로고    scopus 로고
    • Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops
    • Moshou D, Bravo C, Oberti R, et al. Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosyst Eng. 2011;108(4):311–321.
    • (2011) Biosyst Eng , vol.108 , Issue.4 , pp. 311-321
    • Moshou, D.1    Bravo, C.2    Oberti, R.3
  • 24
    • 0023331286 scopus 로고
    • Vision-based guidance of an agriculture tractor
    • Reid JF, Searcy SW. Vision-based guidance of an agriculture tractor. IEEE Control Syst Mag. 1987;7(2):39–43.
    • (1987) IEEE Control Syst Mag , vol.7 , Issue.2 , pp. 39-43
    • Reid, J.F.1    Searcy, S.W.2
  • 25
    • 84866990032 scopus 로고    scopus 로고
    • Towards autonomous agriculture: Automatic ground detection using trinocular stereovision
    • Reina G, Milella A. Towards autonomous agriculture: Automatic ground detection using trinocular stereovision. Sensors. 2012;12(9):12405–12423.
    • (2012) Sensors , vol.12 , Issue.9 , pp. 12405-12423
    • Reina, G.1    Milella, A.2
  • 26
    • 84885662650 scopus 로고    scopus 로고
    • Bonirob–an autonomous field robot platform for individual plant phenotyping
    • Ruckelshausen A, Biber P, Dorna M, et al. Bonirob–an autonomous field robot platform for individual plant phenotyping. Precis Agric. 2009;9(841):1.
    • (2009) Precis Agric , vol.9 , Issue.841 , pp. 1
    • Ruckelshausen, A.1    Biber, P.2    Dorna, M.3
  • 27
    • 84912093409 scopus 로고    scopus 로고
    • A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles
    • Suomalainen J, Anders N, Iqbal S, et al. A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles. Remote Sens. 2014;6(11):11013–11030.
    • (2014) Remote Sens , vol.6 , Issue.11 , pp. 11013-11030
    • Suomalainen, J.1    Anders, N.2    Iqbal, S.3
  • 30
    • 85030985515 scopus 로고    scopus 로고
    • Real-time target detection and steerable spray for vegetable crops
    • In, Workshop on Robotics in Agriculture at Intelligent Robots and Systems (IROS), IEEE, 2015
    • Underwood JP, Calleija M, Taylor Z, et al. Real-time target detection and steerable spray for vegetable crops. In Workshop on Robotics in Agriculture at Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2015.
    • (2015) 2013 IEEE/RSJ International Conference on
    • Underwood, J.P.1    Calleija, M.2    Taylor, Z.3
  • 31
    • 75749148780 scopus 로고    scopus 로고
    • Error modeling and calibration of exteroceptive sensors for accurate mapping applications
    • Underwood JP, Hill A, Peynot T, Scheding SJ. Error modeling and calibration of exteroceptive sensors for accurate mapping applications. J Field Robotics. 2010;27(1):2–20.
    • (2010) J Field Robotics , vol.27 , Issue.1 , pp. 2-20
    • Underwood, J.P.1    Hill, A.2    Peynot, T.3    Scheding, S.J.4
  • 32
    • 85027353355 scopus 로고    scopus 로고
    • [Accessed 2016-03-03]
    • We Prove Solutions (2016). Overview Products: Plant Phenotyping. http://www.wps.eu/en/plant-phenotyping/overview-products-plant-phenotyp%ing. [Accessed 2016-03-03].
    • (2016) Overview Products: Plant Phenotyping
  • 33
    • 79955633355 scopus 로고    scopus 로고
    • Plant detection and mapping for agricultural robots using a 3d lidar sensor
    • Weiss U, Biber P. Plant detection and mapping for agricultural robots using a 3d lidar sensor. Robotics and autonomous systems. 2011;59(5):265–273.
    • (2011) Robotics and autonomous systems , vol.59 , Issue.5 , pp. 265-273
    • Weiss, U.1    Biber, P.2
  • 34
    • 85019067900 scopus 로고    scopus 로고
    • Illumination compensation in ground based hyperspectral imaging
    • Wendel A, Underwood J. Illumination compensation in ground based hyperspectral imaging. ISPRS J Photogramm Remote Sens. 2017;129:162–178.
    • (2017) ISPRS J Photogramm Remote Sens , vol.129 , pp. 162-178
    • Wendel, A.1    Underwood, J.2
  • 35
    • 85027306674 scopus 로고    scopus 로고
    • . Percentile., [Accessed 2016-03-07]
    • Wikipedia (2016). Percentile. https://en.wikipedia.org/wiki/Percentile. [Accessed 2016-03-07].
    • (2016)
  • 36
    • 44749088075 scopus 로고    scopus 로고
    • Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation
    • Wu C, Niu Z, Tang Q, Huang W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric Forest Meteorol. 2008;148(8):1230–1241.
    • (2008) Agric Forest Meteorol , vol.148 , Issue.8 , pp. 1230-1241
    • Wu, C.1    Niu, Z.2    Tang, Q.3    Huang, W.4
  • 37
    • 84864686779 scopus 로고    scopus 로고
    • Spectral preprocessing and calibration techniques
    • In, Sun D-W, ed., San Diego, Academic Press
    • Yao H, Lewis D. Spectral preprocessing and calibration techniques. In: Sun D-W, ed. Hyperspectral Imaging for Food Quality Analysis and Control. San Diego: Academic Press; 2010:45–78.
    • (2010) Hyperspectral Imaging for Food Quality Analysis and Control , pp. 45-78
    • Yao, H.1    Lewis, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.