메뉴 건너뛰기




Volumn 17, Issue 6, 2017, Pages

Time series data analysis of wireless sensor network measurements of temperature

Author keywords

Environmental monitoring; Forecasting; Interpolation; Temperature; Time series analysis; Wireless sensor networks

Indexed keywords

ENVIRONMENTAL ENGINEERING; FORECASTING; HARMONIC ANALYSIS; INTERPOLATION; MONITORING; TEMPERATURE; WIRELESS SENSOR NETWORKS;

EID: 85019665807     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s17061221     Document Type: Article
Times cited : (34)

References (31)
  • 4
    • 33748488864 scopus 로고    scopus 로고
    • Environmental sensor networks: A revolution in the earth system science?
    • Hart, J.K.; Martinez, K. Environmental sensor networks: A revolution in the earth system science? Earth Sci. Rev. 2006, 78, 177–191. [CrossRef]
    • (2006) Earth Sci. Rev. , vol.78 , pp. 177-191
    • Hart, J.K.1    Martinez, K.2
  • 6
    • 77955475098 scopus 로고    scopus 로고
    • A deployment of fine-grained sensor network and empirical analysis of urban temperature
    • Thepvilojanapong, N.; Ono, T.; Tobe, Y. A deployment of fine-grained sensor network and empirical analysis of urban temperature. Sensors 2010, 10, 2217–2241. [CrossRef] [PubMed]
    • (2010) Sensors , vol.10 , pp. 2217-2241
    • Thepvilojanapong, N.1    Ono, T.2    Tobe, Y.3
  • 7
    • 77957994676 scopus 로고    scopus 로고
    • Building-environment control with wireless sensor and actuator networks: Centralized versus distributed
    • Cao, X.; Chen, J.; Xiao, Y.; Sun, Y. Building-environment control with wireless sensor and actuator networks: Centralized versus distributed. IEEE Trans. Ind. Electron. 2010, 57, 3596–3605.
    • (2010) IEEE Trans. Ind. Electron. , vol.57 , pp. 3596-3605
    • Cao, X.1    Chen, J.2    Xiao, Y.3    Sun, Y.4
  • 10
    • 84856154537 scopus 로고    scopus 로고
    • Observing local-scale variability of near-surface temperature and humidity using a wireless sensor network
    • Lengfeld, K.; Ament, F. Observing local-scale variability of near-surface temperature and humidity using a wireless sensor network. J. Appl. Meteorol. Climatol. 2012, 51, 30–41. [CrossRef]
    • (2012) J. Appl. Meteorol. Climatol. , vol.51 , pp. 30-41
    • Lengfeld, K.1    Ament, F.2
  • 12
    • 74349095900 scopus 로고    scopus 로고
    • Spatial interpolation in wireless sensor networks: Localized algorithms for variogram modeling and kriging
    • Umer, M.; Kulik, L.; Tanin, E. Spatial interpolation in wireless sensor networks: Localized algorithms for variogram modeling and kriging. Geoinformatica 2010, 14, 101. [CrossRef]
    • (2010) Geoinformatica , vol.14 , pp. 101
    • Umer, M.1    Kulik, L.2    Tanin, E.3
  • 14
    • 79953311371 scopus 로고    scopus 로고
    • Sparsity-based spatial interpolation in wireless sensor networks
    • Guo, D.; Qu, X.; Huang, L.; Yao, Y. Sparsity-based spatial interpolation in wireless sensor networks. Sensors 2011, 11, 2385–2407. [CrossRef] [PubMed]
    • (2011) Sensors , vol.11 , pp. 2385-2407
    • Guo, D.1    Qu, X.2    Huang, L.3    Yao, Y.4
  • 15
    • 72349097366 scopus 로고    scopus 로고
    • Distributed kriged kalman filter for spatial estimation
    • Cortés, J. Distributed kriged kalman filter for spatial estimation. IEEE Trans. Autom. Control 2009, 54, 2816–2827. [CrossRef]
    • (2009) IEEE Trans. Autom. Control , vol.54 , pp. 2816-2827
    • Cortés, J.1
  • 16
    • 34250374122 scopus 로고    scopus 로고
    • An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation
    • Liu, C.; Wu, K.; Pei, J. An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 1010–1023. [CrossRef]
    • (2007) IEEE Trans. Parallel Distrib. Syst. , vol.18 , pp. 1010-1023
    • Liu, C.1    Wu, K.2    Pei, J.3
  • 18
    • 34547920743 scopus 로고    scopus 로고
    • Adaptive model selection for time series prediction in wireless sensor networks
    • Le Borgne, Y.-A.; Santini, S.; Bontempi, G. Adaptive model selection for time series prediction in wireless sensor networks. Signal Process. 2007, 87, 3010–3020. [CrossRef]
    • (2007) Signal Process , vol.87 , pp. 3010-3020
    • Le Borgne, Y.-A.1    Santini, S.2    Bontempi, G.3
  • 20
    • 33846602237 scopus 로고    scopus 로고
    • Energy efficient information collection with the ARIMA model in wireless sensor networks
    • St. Louis, MO, USA, 28 November–2 December
    • Liu, C.; Wu, K.; Tsao, M. Energy efficient information collection with the ARIMA model in wireless sensor networks. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM ’05.), St. Louis, MO, USA, 28 November–2 December 2005; Volume 5, pp. 2470–2474.
    • (2005) Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM ’05.) , vol.5 , pp. 2470-2474
    • Liu, C.1    Wu, K.2    Tsao, M.3
  • 23
    • 84928128181 scopus 로고    scopus 로고
    • Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes
    • Pardo, J.; Zamora-Martínez, F.; Botella-Rocamora, P. Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes. Sensors 2015, 15, 9277–9304. [CrossRef] [PubMed]
    • (2015) Sensors , vol.15 , pp. 9277-9304
    • Pardo, J.1    Zamora-Martínez, F.2    Botella-Rocamora, P.3
  • 24
    • 33745526711 scopus 로고    scopus 로고
    • PAQ: Time series forecasting for approximate query answering in sensor networks
    • Springer: Zurich, Switzerland
    • Tulone, D.; Madden, S. PAQ: Time series forecasting for approximate query answering in sensor networks. In European Workshop on Wireless Sensor Networks; Springer: Zurich, Switzerland, 2006; pp. 21–37.
    • (2006) European Workshop on Wireless Sensor Networks , pp. 21-37
    • Tulone, D.1    Madden, S.2
  • 26
    • 0032752472 scopus 로고    scopus 로고
    • Geostatistical space–time models: A review
    • Kyriakidis, P.C.; Journel, A.G. Geostatistical space–time models: A review. Math. Geol. 1999, 31, 651–684. [CrossRef]
    • (1999) Math. Geol , vol.31 , pp. 651-684
    • Kyriakidis, P.C.1    Journel, A.G.2
  • 29
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • De Gooijer, J.G.; Hyndman, R.J. 25 years of time series forecasting. Int. J. Forecast. 2006, 22, 443–473. [CrossRef]
    • (2006) Int. J. Forecast. , vol.22 , pp. 443-473
    • De Gooijer, J.G.1    Hyndman, R.J.2
  • 30
    • 0030305457 scopus 로고    scopus 로고
    • R: A language for data analysis and graphics
    • Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [CrossRef]
    • (1996) J. Comput. Graph. Stat. , vol.5 , pp. 299-314
    • Ihaka, R.1    Gentleman, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.