-
2
-
-
48749131500
-
Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest
-
Haddow AJ, Williams MC, Woodall JP, Simpson DI, Goma LK. 1964. Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest. Bull World Health Organ 31:57-69
-
(1964)
Bull World Health Organ
, vol.31
, pp. 57-69
-
-
Haddow, A.J.1
Williams, M.C.2
Woodall, J.P.3
Simpson, D.I.4
Goma, L.K.5
-
3
-
-
67149088928
-
Zika virus outbreak on Yap Island, Federated States of Micronesia
-
Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, BiggerstaffBJ, Fischer M, Hayes EB. 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536-2543. https://doi.org/10.1056/NEJMoa0805715
-
(2009)
N Engl J Med
, vol.360
, pp. 2536-2543
-
-
Duffy, M.R.1
Chen, T.H.2
Hancock, W.T.3
Powers, A.M.4
Kool, J.L.5
Lanciotti, R.S.6
Pretrick, M.7
Marfel, M.8
Holzbauer, S.9
Dubray, C.10
Guillaumot, L.11
Griggs, A.12
Bel, M.13
Lambert, A.J.14
Laven, J.15
Kosoy, O.16
Panella, A.17
Biggerstaff, B.J.18
Fischer, M.19
Hayes, E.B.20
more..
-
4
-
-
84961203748
-
Isolation, identification and genomic characterization of the Asian lineage Zika virus imported to China
-
Deng YQ, Zhao H, Li XF, Zhang NN, Liu ZY, Jiang T, Gu DY, Shi L, He JA, Wang HJ, Sun ZZ, Ye Q, Xie DY, Cao WC, Qin CF. 2016. Isolation, identification and genomic characterization of the Asian lineage Zika virus imported to China. Sci China Life Sci 59:428-430. https://doi.org/10.1007/s11427-016-5043-4
-
(2016)
Sci China Life Sci
, vol.59
, pp. 428-430
-
-
Deng, Y.Q.1
Zhao, H.2
Li, X.F.3
Zhang, N.N.4
Liu, Z.Y.5
Jiang, T.6
Gu, D.Y.7
Shi, L.8
He, J.A.9
Wang, H.J.10
Sun, Z.Z.11
Ye, Q.12
Xie, D.Y.13
Cao, W.C.14
Qin, C.F.15
-
5
-
-
84964266019
-
Isolation and characterization of Zika virus imported to China using C6/36 mosquito cells
-
Deng C, Liu S, Zhang Q, Xu M, Zhang H, Gu D, Shi L, He J, Xiao G, Zhang B. 2016. Isolation and characterization of Zika virus imported to China using C6/36 mosquito cells. Virol Sin 31:176-179. https://doi.org/10.1007/s12250-016-3778-5
-
(2016)
Virol Sin
, vol.31
, pp. 176-179
-
-
Deng, C.1
Liu, S.2
Zhang, Q.3
Xu, M.4
Zhang, H.5
Gu, D.6
Shi, L.7
He, J.8
Xiao, G.9
Zhang, B.10
-
6
-
-
84959292957
-
Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study
-
Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, Araujo ES, de Sequeira PC, de Mendonca MC, de Oliveira L, Tschoeke DA, Schrago CG, Thompson FL, Brasil P, Dos Santos FB, Nogueira RM, Tanuri A, de Filippis AM. 2016. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis 16:653-660. https://doi.org/10.1016/S1473-3099(16)00095-5
-
(2016)
Lancet Infect Dis
, vol.16
, pp. 653-660
-
-
Calvet, G.1
Aguiar, R.S.2
Melo, A.S.3
Sampaio, S.A.4
de Filippis, I.5
Fabri, A.6
Araujo, E.S.7
de Sequeira, P.C.8
de Mendonca, M.C.9
de Oliveira, L.10
Tschoeke, D.A.11
Schrago, C.G.12
Thompson, F.L.13
Brasil, P.14
Dos Santos, F.B.15
Nogueira, R.M.16
Tanuri, A.17
de Filippis, A.M.18
-
7
-
-
84970023750
-
Zika virus disrupts neural progenitor development and leads to microcephaly in mice
-
Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L, Qin CF, Xu Z. 2016. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19:120-126. https://doi.org/10.1016/j.stem.2016.04.017
-
(2016)
Cell Stem Cell
, vol.19
, pp. 120-126
-
-
Li, C.1
Xu, D.2
Ye, Q.3
Hong, S.4
Jiang, Y.5
Liu, X.6
Zhang, N.7
Shi, L.8
Qin, C.F.9
Xu, Z.10
-
8
-
-
84976273968
-
Development of a Zika vaccine
-
Tripp RA, Ross TM. 2016. Development of a Zika vaccine. Expert Rev Vaccines 15:1083-1085. https://doi.org/10.1080/14760584.2016.1192474
-
(2016)
Expert Rev Vaccines
, vol.15
, pp. 1083-1085
-
-
Tripp, R.A.1
Ross, T.M.2
-
9
-
-
11144348130
-
A structural perspective of the flavivirus life cycle
-
Mukhopadhyay S, Kuhn RJ, Rossmann MG. 2005. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13-22. https://doi.org/10.1038/nrmicro1067
-
(2005)
Nat Rev Microbiol
, vol.3
, pp. 13-22
-
-
Mukhopadhyay, S.1
Kuhn, R.J.2
Rossmann, M.G.3
-
11
-
-
84879348793
-
Identification of host proteins involved in Japanese encephalitis virus infection by quantitative proteomics analysis
-
Zhang LK, Chai F, Li HY, Xiao G, Guo L. 2013. Identification of host proteins involved in Japanese encephalitis virus infection by quantitative proteomics analysis. J Proteome Res 12:2666-2678. https://doi.org/10.1021/pr400011k
-
(2013)
J Proteome Res
, vol.12
, pp. 2666-2678
-
-
Zhang, L.K.1
Chai, F.2
Li, H.Y.3
Xiao, G.4
Guo, L.5
-
12
-
-
84867388478
-
Virus-host interactomes-antiviral drug discovery
-
Ma-Lauer Y, Lei J, Hilgenfeld R, von Brunn A. 2012. Virus-host interactomes-antiviral drug discovery. Curr Opin Virol 2:614-621. https://doi.org/10.1016/j.coviro.2012.09.003
-
(2012)
Curr Opin Virol
, vol.2
, pp. 614-621
-
-
Ma-Lauer, Y.1
Lei, J.2
Hilgenfeld, R.3
von Brunn, A.4
-
13
-
-
84977639708
-
Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens
-
Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE. 2016. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535:159-163. https://doi.org/10.1038/nature18631
-
(2016)
Nature
, vol.535
, pp. 159-163
-
-
Marceau, C.D.1
Puschnik, A.S.2
Majzoub, K.3
Ooi, Y.S.4
Brewer, S.M.5
Fuchs, G.6
Swaminathan, K.7
Mata, M.A.8
Elias, J.E.9
Sarnow, P.10
Carette, J.E.11
-
14
-
-
84977606002
-
A CRISPR screen defines a signal peptide processing pathway required by flaviviruses
-
Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H, White JP, Zuiani A, Zhang P, Fernandez E, Zhang Q, Dowd KA, Pierson TC, Cherry S, Diamond MS. 2016. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535:164-168. https://doi.org/10.1038/nature18625
-
(2016)
Nature
, vol.535
, pp. 164-168
-
-
Zhang, R.1
Miner, J.J.2
Gorman, M.J.3
Rausch, K.4
Ramage, H.5
White, J.P.6
Zuiani, A.7
Zhang, P.8
Fernandez, E.9
Zhang, Q.10
Dowd, K.A.11
Pierson, T.C.12
Cherry, S.13
Diamond, M.S.14
-
15
-
-
65549169178
-
Discovery of insect and human dengue virus host factors
-
Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, Ramirez JL, Dimopoulos G, Yang PL, Pearson JL, Garcia-Blanco MA. 2009. Discovery of insect and human dengue virus host factors. Nature 458:1047-1050. https://doi.org/10.1038/nature07967
-
(2009)
Nature
, vol.458
, pp. 1047-1050
-
-
Sessions, O.M.1
Barrows, N.J.2
Souza-Neto, J.A.3
Robinson, T.J.4
Hershey, C.L.5
Rodgers, M.A.6
Ramirez, J.L.7
Dimopoulos, G.8
Yang, P.L.9
Pearson, J.L.10
Garcia-Blanco, M.A.11
-
16
-
-
48249112228
-
The Aedes aegypti Toll pathway controls dengue virus infection
-
Xi Z, Ramirez JL, Dimopoulos G. 2008. The Aedes aegypti Toll pathway controls dengue virus infection. PLoS Pathog 4:e1000098. https://doi.org/10.1371/journal.ppat.1000098
-
(2008)
PLoS Pathog
, vol.4
-
-
Xi, Z.1
Ramirez, J.L.2
Dimopoulos, G.3
-
17
-
-
77957361060
-
Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens
-
Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K, Zou Z, Ramirez JL, Das S, Alvarez K, Arensburger P, Bryant B, Chapman SB, Dong Y, Erickson SM, Karunaratne SH, Kokoza V, Kodira CD, Pignatelli P, Shin SW, Vanlandingham DL, Atkinson PW, Birren B, Christophides GK, Clem RJ, Hemingway J, Higgs S, Megy K, Ranson H, Zdobnov EM, Raikhel AS, Christensen BM, Dimopoulos G, Muskavitch MA. 2010. Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science 330:88-90. https://doi.org/10.1126/science.1193162
-
(2010)
Science
, vol.330
, pp. 88-90
-
-
Bartholomay, L.C.1
Waterhouse, R.M.2
Mayhew, G.F.3
Campbell, C.L.4
Michel, K.5
Zou, Z.6
Ramirez, J.L.7
Das, S.8
Alvarez, K.9
Arensburger, P.10
Bryant, B.11
Chapman, S.B.12
Dong, Y.13
Erickson, S.M.14
Karunaratne, S.H.15
Kokoza, V.16
Kodira, C.D.17
Pignatelli, P.18
Shin, S.W.19
Vanlandingham, D.L.20
Atkinson, P.W.21
Birren, B.22
Christophides, G.K.23
Clem, R.J.24
Hemingway, J.25
Higgs, S.26
Megy, K.27
Ranson, H.28
Zdobnov, E.M.29
Raikhel, A.S.30
Christensen, B.M.31
Dimopoulos, G.32
Muskavitch, M.A.33
more..
-
18
-
-
80053444244
-
Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses
-
Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, Wang P, Krishnan MN, Higgs S, Fikrig E. 2011. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog 7:e1002189. https://doi.org/10.1371/journal.ppat.1002189
-
(2011)
PLoS Pathog
, vol.7
-
-
Colpitts, T.M.1
Cox, J.2
Vanlandingham, D.L.3
Feitosa, F.M.4
Cheng, G.5
Kurscheid, S.6
Wang, P.7
Krishnan, M.N.8
Higgs, S.9
Fikrig, E.10
-
19
-
-
84870265764
-
Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection
-
Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, James AA. 2012. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PLoS One 7:e50512. https://doi.org/10.1371/journal.pone.0050512
-
(2012)
PLoS One
, vol.7
-
-
Bonizzoni, M.1
Dunn, W.A.2
Campbell, C.L.3
Olson, K.E.4
Marinotti, O.5
James, A.A.6
-
20
-
-
85003706344
-
Identification of Zika virus and dengue virus dependency factors using functional genomics
-
Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, John SP, Aker AM, Renzette N, Robbins DR, Guo Z, Green S, Kowalik TF, Brass AL. 2016. Identification of Zika virus and dengue virus dependency factors using functional genomics. Cell Rep 16:232-246. https://doi.org/10.1016/j.celrep.2016.06.028
-
(2016)
Cell Rep
, vol.16
, pp. 232-246
-
-
Savidis, G.1
McDougall, W.M.2
Meraner, P.3
Perreira, J.M.4
Portmann, J.M.5
Trincucci, G.6
John, S.P.7
Aker, A.M.8
Renzette, N.9
Robbins, D.R.10
Guo, Z.11
Green, S.12
Kowalik, T.F.13
Brass, A.L.14
-
21
-
-
84895742716
-
Zika virus in Gabon (Central Africa)-2007: a new threat from Aedes albopictus?
-
Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D, Fontenille D, Paupy C, Leroy EM. 2014. Zika virus in Gabon (Central Africa)-2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis 8:e2681. https://doi.org/10.1371/journal.pntd.0002681
-
(2014)
PLoS Negl Trop Dis
, vol.8
-
-
Grard, G.1
Caron, M.2
Mombo, I.M.3
Nkoghe, D.4
Mboui Ondo, S.5
Jiolle, D.6
Fontenille, D.7
Paupy, C.8
Leroy, E.M.9
-
22
-
-
84904061774
-
Identification of protein interaction partners in mammalian cells using SILAC-immunoprecipitation quantitative proteomics
-
Emmott E, Goodfellow I. 2014. Identification of protein interaction partners in mammalian cells using SILAC-immunoprecipitation quantitative proteomics. J Vis Exp 2014(89):e51656
-
(2014)
J Vis Exp
, vol.2014
, Issue.89
-
-
Emmott, E.1
Goodfellow, I.2
-
23
-
-
84946555284
-
Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution
-
Chen XG, Jiang X, Gu J, Xu M, Wu Y, Deng Y, Zhang C, Bonizzoni M, Dermauw W, Vontas J, Armbruster P, Huang X, Yang Y, Zhang H, He W, Peng H, Liu Y, Wu K, Chen J, Lirakis M, Topalis P, Van Leeuwen T, Hall AB, Jiang X, Thorpe C, Mueller RL, Sun C, Waterhouse RM, Yan G, Tu ZJ, Fang X, James AA. 2015. Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proc Natl Acad Sci U S A 112:E5907-E5915. https://doi.org/10.1073/pnas.1516410112
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E5907-E5915
-
-
Chen, X.G.1
Jiang, X.2
Gu, J.3
Xu, M.4
Wu, Y.5
Deng, Y.6
Zhang, C.7
Bonizzoni, M.8
Dermauw, W.9
Vontas, J.10
Armbruster, P.11
Huang, X.12
Yang, Y.13
Zhang, H.14
He, W.15
Peng, H.16
Liu, Y.17
Wu, K.18
Chen, J.19
Lirakis, M.20
Topalis, P.21
Van Leeuwen, T.22
Hall, A.B.23
Jiang, X.24
Thorpe, C.25
Mueller, R.L.26
Sun, C.27
Waterhouse, R.M.28
Yan, G.29
Tu, Z.J.30
Fang, X.31
James, A.A.32
more..
-
24
-
-
84892511644
-
Large-scale gene function analysis with the PANTHER classification system
-
Mi H, Muruganujan A, Casagrande JT, Thomas PD. 2013. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551-1566. https://doi.org/10.1038/nprot.2013.092
-
(2013)
Nat Protoc
, vol.8
, pp. 1551-1566
-
-
Mi, H.1
Muruganujan, A.2
Casagrande, J.T.3
Thomas, P.D.4
-
25
-
-
10644245814
-
The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry
-
Yu GY, Lai MM. 2005. The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. J Virol 79:644-648. https://doi.org/10.1128/JVI.79.1.644-648.2005
-
(2005)
J Virol
, vol.79
, pp. 644-648
-
-
Yu, G.Y.1
Lai, M.M.2
-
26
-
-
60049095589
-
Orthopoxviruses require a functional ubiquitin-proteasome system for productive replication
-
Teale A, Campbell S, Van Buuren N, Magee WC, Watmough K, Couturier B, Shipclark R, Barry M. 2009. Orthopoxviruses require a functional ubiquitin-proteasome system for productive replication. J Virol 83: 2099-2108. https://doi.org/10.1128/JVI.01753-08
-
(2009)
J Virol
, vol.83
, pp. 2099-2108
-
-
Teale, A.1
Campbell, S.2
Van Buuren, N.3
Magee, W.C.4
Watmough, K.5
Couturier, B.6
Shipclark, R.7
Barry, M.8
-
27
-
-
77954477478
-
The ubiquitinproteasome system plays an important role during various stages of the coronavirus infection cycle
-
Raaben M, Posthuma CC, Verheije MH, te Lintelo EG, Kikkert M, Drijfhout JW, Snijder EJ, Rottier PJ, de Haan CA. 2010. The ubiquitinproteasome system plays an important role during various stages of the coronavirus infection cycle. J Virol 84:7869-7879. https://doi.org/10.1128/JVI.00485-10
-
(2010)
J Virol
, vol.84
, pp. 7869-7879
-
-
Raaben, M.1
Posthuma, C.C.2
Verheije, M.H.3
te Lintelo, E.G.4
Kikkert, M.5
Drijfhout, J.W.6
Snijder, E.J.7
Rottier, P.J.8
de Haan, C.A.9
-
28
-
-
77955427276
-
Viral hijacking of the host ubiquitin system to evade interferon responses
-
Viswanathan K, Fruh K, DeFilippis V. 2010. Viral hijacking of the host ubiquitin system to evade interferon responses. Curr Opin Microbiol 13:517-523. https://doi.org/10.1016/j.mib.2010.05.012
-
(2010)
Curr Opin Microbiol
, vol.13
, pp. 517-523
-
-
Viswanathan, K.1
Fruh, K.2
DeFilippis, V.3
-
29
-
-
84978985593
-
Dengue virus genome uncoating requires ubiquitination
-
Byk LA, Iglesias NG, De Maio FA, Gebhard LG, Rossi M, Gamarnik AV. 2016. Dengue virus genome uncoating requires ubiquitination. mBio 7(3):e00804-16. https://doi.org/10.1128/mBio.00804-16
-
(2016)
mBio
, vol.7
, Issue.3
-
-
Byk, L.A.1
Iglesias, N.G.2
De Maio, F.A.3
Gebhard, L.G.4
Rossi, M.5
Gamarnik, A.V.6
-
30
-
-
85013705077
-
Zika virus infection damages the testes in mice
-
Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH, Diamond MS. 2016. Zika virus infection damages the testes in mice. Nature 540:438-442. https://doi.org/10.1038/nature20556
-
(2016)
Nature
, vol.540
, pp. 438-442
-
-
Govero, J.1
Esakky, P.2
Scheaffer, S.M.3
Fernandez, E.4
Drury, A.5
Platt, D.J.6
Gorman, M.J.7
Richner, J.M.8
Caine, E.A.9
Salazar, V.10
Moley, K.H.11
Diamond, M.S.12
-
31
-
-
84962438993
-
A mouse model of Zika virus pathogenesis
-
Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS. 2016. A mouse model of Zika virus pathogenesis. Cell Host Microbe 19:720-730. https://doi.org/10.1016/j.chom.2016.03.010
-
(2016)
Cell Host Microbe
, vol.19
, pp. 720-730
-
-
Lazear, H.M.1
Govero, J.2
Smith, A.M.3
Platt, D.J.4
Fernandez, E.5
Miner, J.J.6
Diamond, M.S.7
-
32
-
-
84969960228
-
Zika virus infection during pregnancy in mice causes placental damage and fetal demise
-
Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, Garber C, Noll M, Klein RS, Noguchi KK, Mysorekar IU, Diamond MS. 2016. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165:1081-1091. https://doi.org/10.1016/j.cell.2016.05.008
-
(2016)
Cell
, vol.165
, pp. 1081-1091
-
-
Miner, J.J.1
Cao, B.2
Govero, J.3
Smith, A.M.4
Fernandez, E.5
Cabrera, O.H.6
Garber, C.7
Noll, M.8
Klein, R.S.9
Noguchi, K.K.10
Mysorekar, I.U.11
Diamond, M.S.12
-
33
-
-
0242581687
-
The immune response of Drosophila
-
Hoffmann JA. 2003. The immune response of Drosophila. Nature 426: 33-38. https://doi.org/10.1038/nature02021
-
(2003)
Nature
, vol.426
, pp. 33-38
-
-
Hoffmann, J.A.1
-
34
-
-
0037013856
-
The Toll and Imd pathways are the major regulators of the immune response in Drosophila
-
De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B. 2002. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 21:2568-2579. https://doi.org/10.1093/emboj/21.11.2568
-
(2002)
EMBO J
, vol.21
, pp. 2568-2579
-
-
De Gregorio, E.1
Spellman, P.T.2
Tzou, P.3
Rubin, G.M.4
Lemaitre, B.5
-
35
-
-
24944485547
-
The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila
-
Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler JL. 2005. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat Immunol 6:946-953. https://doi.org/10.1038/ni1237
-
(2005)
Nat Immunol
, vol.6
, pp. 946-953
-
-
Dostert, C.1
Jouanguy, E.2
Irving, P.3
Troxler, L.4
Galiana-Arnoux, D.5
Hetru, C.6
Hoffmann, J.A.7
Imler, J.L.8
-
36
-
-
84912570468
-
Mosquito immunity against arboviruses
-
Sim S, Jupatanakul N, Dimopoulos G. 2014. Mosquito immunity against arboviruses. Viruses 6:4479-4504. https://doi.org/10.3390/v6114479
-
(2014)
Viruses
, vol.6
, pp. 4479-4504
-
-
Sim, S.1
Jupatanakul, N.2
Dimopoulos, G.3
-
37
-
-
0036167107
-
Drosophila innate immunity: an evolutionary perspective
-
Hoffmann JA, Reichhart JM. 2002. Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3:121-126. https://doi.org/10.1038/ni0202-121
-
(2002)
Nat Immunol
, vol.3
, pp. 121-126
-
-
Hoffmann, J.A.1
Reichhart, J.M.2
-
38
-
-
0035975940
-
Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless
-
Brown S, Hu N, Hombria JC. 2001. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr Biol 11:1700-1705. https://doi.org/10.1016/S0960-9822(01)00524-3
-
(2001)
Curr Biol
, vol.11
, pp. 1700-1705
-
-
Brown, S.1
Hu, N.2
Hombria, J.C.3
-
39
-
-
70449577158
-
An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense
-
Souza-Neto JA, Sim S, Dimopoulos G. 2009. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A 106:17841-17846. https://doi.org/10.1073/pnas.090 5006106
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 17841-17846
-
-
Souza-Neto, J.A.1
Sim, S.2
Dimopoulos, G.3
-
40
-
-
0942298129
-
Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection
-
Lin CC, Chou CM, Hsu YL, Lien JC, Wang YM, Chen ST, Tsai SC, Hsiao PW, Huang CJ. 2004. Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection. J Biol Chem 279:3308-3317
-
(2004)
J Biol Chem
, vol.279
, pp. 3308-3317
-
-
Lin, C.C.1
Chou, C.M.2
Hsu, Y.L.3
Lien, J.C.4
Wang, Y.M.5
Chen, S.T.6
Tsai, S.C.7
Hsiao, P.W.8
Huang, C.J.9
-
41
-
-
84907700836
-
Flavivirus NS5 prevents the InSTATement of IFN
-
Shi PY. 2014. Flavivirus NS5 prevents the InSTATement of IFN. Cell Host Microbe 16:269-271. https://doi.org/10.1016/j.chom.2014.08.011
-
(2014)
Cell Host Microbe
, vol.16
, pp. 269-271
-
-
Shi, P.Y.1
-
42
-
-
84973446526
-
Zika virus targets human STAT2 to inhibit type I interferon signaling
-
Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, Schwarz MC, Sanchez-Seco MP, Evans MJ, Best SM, Garcia-Sastre A. 2016. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19:882-890. https://doi.org/10.1016/j.chom.2016.05.009
-
(2016)
Cell Host Microbe
, vol.19
, pp. 882-890
-
-
Grant, A.1
Ponia, S.S.2
Tripathi, S.3
Balasubramaniam, V.4
Miorin, L.5
Sourisseau, M.6
Schwarz, M.C.7
Sanchez-Seco, M.P.8
Evans, M.J.9
Best, S.M.10
Garcia-Sastre, A.11
-
43
-
-
84868102239
-
DENV inhibits type I IFN production in infected cells by cleaving human STING
-
Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, Maringer K, Bernal-Rubio D, Shabman RS, Simon V, Rodriguez-Madoz JR, Mulder LC, Barber GN, Fernandez-Sesma A. 2012. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog 8:e1002934. https://doi.org/10.1371/journal.ppat.1002934
-
(2012)
PLoS Pathog
, vol.8
-
-
Aguirre, S.1
Maestre, A.M.2
Pagni, S.3
Patel, J.R.4
Savage, T.5
Gutman, D.6
Maringer, K.7
Bernal-Rubio, D.8
Shabman, R.S.9
Simon, V.10
Rodriguez-Madoz, J.R.11
Mulder, L.C.12
Barber, G.N.13
Fernandez-Sesma, A.14
-
44
-
-
84864036246
-
Dengue virus targets the adaptor protein MITA to subvert host innate immunity
-
Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, Lin YL. 2012. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog 8:e1002780. https://doi.org/10.1371/journal.ppat.1002780
-
(2012)
PLoS Pathog
, vol.8
-
-
Yu, C.Y.1
Chang, T.H.2
Liang, J.J.3
Chiang, R.L.4
Lee, Y.L.5
Liao, C.L.6
Lin, Y.L.7
-
45
-
-
84971668027
-
Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects
-
Hanners NW, Eitson JL, Usui N, Richardson RB, Wexler EM, Konopka G, Schoggins JW. 2016. Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects. Cell Rep 15:2315-2322. https://doi.org/10.1016/j.celrep.2016.05.075
-
(2016)
Cell Rep
, vol.15
, pp. 2315-2322
-
-
Hanners, N.W.1
Eitson, J.L.2
Usui, N.3
Richardson, R.B.4
Wexler, E.M.5
Konopka, G.6
Schoggins, J.W.7
-
46
-
-
79954601093
-
Dengue virus modulates the unfolded protein response in a time-dependent manner
-
Peña J, Harris E. 2011. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem 286:14226-14236. https://doi.org/10.1074/jbc. M111.222703
-
(2011)
J Biol Chem
, vol.286
, pp. 14226-14236
-
-
Peña, J.1
Harris, E.2
-
47
-
-
77957201605
-
The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex
-
Gillespie LK, Hoenen A, Morgan G, Mackenzie JM. 2010. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J Virol 84:10438-10447. https://doi.org/10.1128/JVI.00986-10
-
(2010)
J Virol
, vol.84
, pp. 10438-10447
-
-
Gillespie, L.K.1
Hoenen, A.2
Morgan, G.3
Mackenzie, J.M.4
-
48
-
-
84905176062
-
Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy
-
Blázquez AB, Escribano-Romero E, Merino-Ramos T, Saiz JC, Martin-Acebes MA. 2014. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol 5:266. https://doi.org/10.3389/fmicb.2014.00266
-
(2014)
Front Microbiol
, vol.5
, pp. 266
-
-
Blázquez, A.B.1
Escribano-Romero, E.2
Merino-Ramos, T.3
Saiz, J.C.4
Martin-Acebes, M.A.5
-
49
-
-
33751247922
-
Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress
-
Yu CY, Hsu YW, Liao CL, Lin YL. 2006. Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol 80:11868-11880. https://doi.org/10.1128/JVI.00879-06
-
(2006)
J Virol
, vol.80
, pp. 11868-11880
-
-
Yu, C.Y.1
Hsu, Y.W.2
Liao, C.L.3
Lin, Y.L.4
-
50
-
-
16244405250
-
Hepatitis C virus, ER stress, and oxidative stress
-
Tardif KD, Waris G, Siddiqui A. 2005. Hepatitis C virus, ER stress, and oxidative stress. Trends Microbiol 13:159-163. https://doi.org/10.1016/j.tim.2005.02.004
-
(2005)
Trends Microbiol
, vol.13
, pp. 159-163
-
-
Tardif, K.D.1
Waris, G.2
Siddiqui, A.3
-
51
-
-
65449183853
-
Viral avoidance and exploitation of the ubiquitin system
-
Randow F, Lehner PJ. 2009. Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol 11:527-534. https://doi.org/10.1038/ncb0509-527
-
(2009)
Nat Cell Biol
, vol.11
, pp. 527-534
-
-
Randow, F.1
Lehner, P.J.2
-
52
-
-
67649391002
-
Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection
-
Isaacson MK, Ploegh HL. 2009. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 5:559-570. https://doi.org/10.1016/j.chom.2009.05.012
-
(2009)
Cell Host Microbe
, vol.5
, pp. 559-570
-
-
Isaacson, M.K.1
Ploegh, H.L.2
-
53
-
-
84949494650
-
Production of infectious dengue virus in Aedes aegypti is dependent on the ubiquitin proteasome pathway
-
Choy MM, Sessions OM, Gubler DJ, Ooi EE. 2015. Production of infectious dengue virus in Aedes aegypti is dependent on the ubiquitin proteasome pathway. PLoS Negl Trop Dis 9:e0004227. https://doi.org/10.1371/journal.pntd.0004227
-
(2015)
PLoS Negl Trop Dis
, vol.9
-
-
Choy, M.M.1
Sessions, O.M.2
Gubler, D.J.3
Ooi, E.E.4
-
54
-
-
84974578289
-
A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection
-
Troupin A, Londono-Renteria B, Conway MJ, Cloherty E, Jameson S, Higgs S, Vanlandingham DL, Fikrig E, Colpitts TM. 2016. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Biochim Biophys Acta 1860:1898-1909. https://doi.org/10.1016/j.bbagen.2016.05.033
-
(2016)
Biochim Biophys Acta
, vol.1860
, pp. 1898-1909
-
-
Troupin, A.1
Londono-Renteria, B.2
Conway, M.J.3
Cloherty, E.4
Jameson, S.5
Higgs, S.6
Vanlandingham, D.L.7
Fikrig, E.8
Colpitts, T.M.9
-
55
-
-
84983431580
-
The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus
-
Wang S, Liu H, Zu X, Liu Y, Chen L, Zhu X, Zhang L, Zhou Z, Xiao G, Wang W. 2016. The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus. Virology 498:116-127. https://doi.org/10.1016/j.virol.2016.08.013
-
(2016)
Virology
, vol.498
, pp. 116-127
-
-
Wang, S.1
Liu, H.2
Zu, X.3
Liu, Y.4
Chen, L.5
Zhu, X.6
Zhang, L.7
Zhou, Z.8
Xiao, G.9
Wang, W.10
-
56
-
-
84962436399
-
The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-beta production and apoptosis induction
-
Frumence E, Roche M, Krejbich-Trotot P, El-Kalamouni C, Nativel B, Rondeau P, Misse D, Gadea G, Viranaicken W, Despres P. 2016. The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-beta production and apoptosis induction. Virology 493:217-226. https://doi.org/10.1016/j.virol.2016.03.006
-
(2016)
Virology
, vol.493
, pp. 217-226
-
-
Frumence, E.1
Roche, M.2
Krejbich-Trotot, P.3
El-Kalamouni, C.4
Nativel, B.5
Rondeau, P.6
Misse, D.7
Gadea, G.8
Viranaicken, W.9
Despres, P.10
-
57
-
-
84945122923
-
Analysis of EV71 infection progression using triple-SILAC-based proteomics approach
-
Li HY, Zhang LK, Zhu XJ, Shang J, Chen X, Zhu Y, Guo L. 2015. Analysis of EV71 infection progression using triple-SILAC-based proteomics approach. Proteomics 15:3629-3643. https://doi.org/10.1002/pmic.201500180
-
(2015)
Proteomics
, vol.15
, pp. 3629-3643
-
-
Li, H.Y.1
Zhang, L.K.2
Zhu, X.J.3
Shang, J.4
Chen, X.5
Zhu, Y.6
Guo, L.7
-
58
-
-
84928914508
-
Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection
-
Chai F, Li HY, Wang W, Zhu XJ, Li Y, Wang S, Guo L, Zhang LK, Xiao G. 2015. Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection. Biochim Biophys Acta 1854:967-978. https://doi.org/10.1016/j.bbapap.2015.04.016
-
(2015)
Biochim Biophys Acta
, vol.1854
, pp. 967-978
-
-
Chai, F.1
Li, H.Y.2
Wang, W.3
Zhu, X.J.4
Li, Y.5
Wang, S.6
Guo, L.7
Zhang, L.K.8
Xiao, G.9
-
59
-
-
84891796097
-
ProteomeXchange provides globally coordinated proteomics data submission and dissemination
-
Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-Bartolome S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H. 2014. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223-226. https://doi.org/10.1038/nbt.2839
-
(2014)
Nat Biotechnol
, vol.32
, pp. 223-226
-
-
Vizcaíno, J.A.1
Deutsch, E.W.2
Wang, R.3
Csordas, A.4
Reisinger, F.5
Rios, D.6
Dianes, J.A.7
Sun, Z.8
Farrah, T.9
Bandeira, N.10
Binz, P.A.11
Xenarios, I.12
Eisenacher, M.13
Mayer, G.14
Gatto, L.15
Campos, A.16
Chalkley, R.J.17
Kraus, H.J.18
Albar, J.P.19
Martinez-Bartolome, S.20
Apweiler, R.21
Omenn, G.S.22
Martens, L.23
Jones, A.R.24
Hermjakob, H.25
more..
|