메뉴 건너뛰기




Volumn 91, Issue 12, 2017, Pages

Quantitative proteomic analysis of mosquito C6/36 cells reveals host proteins involved in Zika virus infection

Author keywords

Bortezomib; Quantitative proteomics; Ubiquitin proteasome system; Virus host interaction; Zika virus

Indexed keywords

BENZYLOXYCARBONYLLEUCYLLEUCYLLEUCINAL; BETA INTERFERON; BORTEZOMIB; CELL PROTEIN; PROTEASOME; UBIQUITIN; INSECT PROTEIN;

EID: 85019659633     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.00554-17     Document Type: Article
Times cited : (42)

References (59)
  • 2
    • 48749131500 scopus 로고
    • Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest
    • Haddow AJ, Williams MC, Woodall JP, Simpson DI, Goma LK. 1964. Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest. Bull World Health Organ 31:57-69
    • (1964) Bull World Health Organ , vol.31 , pp. 57-69
    • Haddow, A.J.1    Williams, M.C.2    Woodall, J.P.3    Simpson, D.I.4    Goma, L.K.5
  • 5
    • 84964266019 scopus 로고    scopus 로고
    • Isolation and characterization of Zika virus imported to China using C6/36 mosquito cells
    • Deng C, Liu S, Zhang Q, Xu M, Zhang H, Gu D, Shi L, He J, Xiao G, Zhang B. 2016. Isolation and characterization of Zika virus imported to China using C6/36 mosquito cells. Virol Sin 31:176-179. https://doi.org/10.1007/s12250-016-3778-5
    • (2016) Virol Sin , vol.31 , pp. 176-179
    • Deng, C.1    Liu, S.2    Zhang, Q.3    Xu, M.4    Zhang, H.5    Gu, D.6    Shi, L.7    He, J.8    Xiao, G.9    Zhang, B.10
  • 7
    • 84970023750 scopus 로고    scopus 로고
    • Zika virus disrupts neural progenitor development and leads to microcephaly in mice
    • Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, Zhang N, Shi L, Qin CF, Xu Z. 2016. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19:120-126. https://doi.org/10.1016/j.stem.2016.04.017
    • (2016) Cell Stem Cell , vol.19 , pp. 120-126
    • Li, C.1    Xu, D.2    Ye, Q.3    Hong, S.4    Jiang, Y.5    Liu, X.6    Zhang, N.7    Shi, L.8    Qin, C.F.9    Xu, Z.10
  • 8
    • 84976273968 scopus 로고    scopus 로고
    • Development of a Zika vaccine
    • Tripp RA, Ross TM. 2016. Development of a Zika vaccine. Expert Rev Vaccines 15:1083-1085. https://doi.org/10.1080/14760584.2016.1192474
    • (2016) Expert Rev Vaccines , vol.15 , pp. 1083-1085
    • Tripp, R.A.1    Ross, T.M.2
  • 9
    • 11144348130 scopus 로고    scopus 로고
    • A structural perspective of the flavivirus life cycle
    • Mukhopadhyay S, Kuhn RJ, Rossmann MG. 2005. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13-22. https://doi.org/10.1038/nrmicro1067
    • (2005) Nat Rev Microbiol , vol.3 , pp. 13-22
    • Mukhopadhyay, S.1    Kuhn, R.J.2    Rossmann, M.G.3
  • 10
  • 11
    • 84879348793 scopus 로고    scopus 로고
    • Identification of host proteins involved in Japanese encephalitis virus infection by quantitative proteomics analysis
    • Zhang LK, Chai F, Li HY, Xiao G, Guo L. 2013. Identification of host proteins involved in Japanese encephalitis virus infection by quantitative proteomics analysis. J Proteome Res 12:2666-2678. https://doi.org/10.1021/pr400011k
    • (2013) J Proteome Res , vol.12 , pp. 2666-2678
    • Zhang, L.K.1    Chai, F.2    Li, H.Y.3    Xiao, G.4    Guo, L.5
  • 12
    • 84867388478 scopus 로고    scopus 로고
    • Virus-host interactomes-antiviral drug discovery
    • Ma-Lauer Y, Lei J, Hilgenfeld R, von Brunn A. 2012. Virus-host interactomes-antiviral drug discovery. Curr Opin Virol 2:614-621. https://doi.org/10.1016/j.coviro.2012.09.003
    • (2012) Curr Opin Virol , vol.2 , pp. 614-621
    • Ma-Lauer, Y.1    Lei, J.2    Hilgenfeld, R.3    von Brunn, A.4
  • 16
    • 48249112228 scopus 로고    scopus 로고
    • The Aedes aegypti Toll pathway controls dengue virus infection
    • Xi Z, Ramirez JL, Dimopoulos G. 2008. The Aedes aegypti Toll pathway controls dengue virus infection. PLoS Pathog 4:e1000098. https://doi.org/10.1371/journal.ppat.1000098
    • (2008) PLoS Pathog , vol.4
    • Xi, Z.1    Ramirez, J.L.2    Dimopoulos, G.3
  • 19
    • 84870265764 scopus 로고    scopus 로고
    • Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection
    • Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, James AA. 2012. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PLoS One 7:e50512. https://doi.org/10.1371/journal.pone.0050512
    • (2012) PLoS One , vol.7
    • Bonizzoni, M.1    Dunn, W.A.2    Campbell, C.L.3    Olson, K.E.4    Marinotti, O.5    James, A.A.6
  • 22
    • 84904061774 scopus 로고    scopus 로고
    • Identification of protein interaction partners in mammalian cells using SILAC-immunoprecipitation quantitative proteomics
    • Emmott E, Goodfellow I. 2014. Identification of protein interaction partners in mammalian cells using SILAC-immunoprecipitation quantitative proteomics. J Vis Exp 2014(89):e51656
    • (2014) J Vis Exp , vol.2014 , Issue.89
    • Emmott, E.1    Goodfellow, I.2
  • 24
    • 84892511644 scopus 로고    scopus 로고
    • Large-scale gene function analysis with the PANTHER classification system
    • Mi H, Muruganujan A, Casagrande JT, Thomas PD. 2013. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551-1566. https://doi.org/10.1038/nprot.2013.092
    • (2013) Nat Protoc , vol.8 , pp. 1551-1566
    • Mi, H.1    Muruganujan, A.2    Casagrande, J.T.3    Thomas, P.D.4
  • 25
    • 10644245814 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry
    • Yu GY, Lai MM. 2005. The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. J Virol 79:644-648. https://doi.org/10.1128/JVI.79.1.644-648.2005
    • (2005) J Virol , vol.79 , pp. 644-648
    • Yu, G.Y.1    Lai, M.M.2
  • 28
    • 77955427276 scopus 로고    scopus 로고
    • Viral hijacking of the host ubiquitin system to evade interferon responses
    • Viswanathan K, Fruh K, DeFilippis V. 2010. Viral hijacking of the host ubiquitin system to evade interferon responses. Curr Opin Microbiol 13:517-523. https://doi.org/10.1016/j.mib.2010.05.012
    • (2010) Curr Opin Microbiol , vol.13 , pp. 517-523
    • Viswanathan, K.1    Fruh, K.2    DeFilippis, V.3
  • 33
    • 0242581687 scopus 로고    scopus 로고
    • The immune response of Drosophila
    • Hoffmann JA. 2003. The immune response of Drosophila. Nature 426: 33-38. https://doi.org/10.1038/nature02021
    • (2003) Nature , vol.426 , pp. 33-38
    • Hoffmann, J.A.1
  • 34
    • 0037013856 scopus 로고    scopus 로고
    • The Toll and Imd pathways are the major regulators of the immune response in Drosophila
    • De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B. 2002. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 21:2568-2579. https://doi.org/10.1093/emboj/21.11.2568
    • (2002) EMBO J , vol.21 , pp. 2568-2579
    • De Gregorio, E.1    Spellman, P.T.2    Tzou, P.3    Rubin, G.M.4    Lemaitre, B.5
  • 36
    • 84912570468 scopus 로고    scopus 로고
    • Mosquito immunity against arboviruses
    • Sim S, Jupatanakul N, Dimopoulos G. 2014. Mosquito immunity against arboviruses. Viruses 6:4479-4504. https://doi.org/10.3390/v6114479
    • (2014) Viruses , vol.6 , pp. 4479-4504
    • Sim, S.1    Jupatanakul, N.2    Dimopoulos, G.3
  • 37
    • 0036167107 scopus 로고    scopus 로고
    • Drosophila innate immunity: an evolutionary perspective
    • Hoffmann JA, Reichhart JM. 2002. Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3:121-126. https://doi.org/10.1038/ni0202-121
    • (2002) Nat Immunol , vol.3 , pp. 121-126
    • Hoffmann, J.A.1    Reichhart, J.M.2
  • 38
    • 0035975940 scopus 로고    scopus 로고
    • Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless
    • Brown S, Hu N, Hombria JC. 2001. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr Biol 11:1700-1705. https://doi.org/10.1016/S0960-9822(01)00524-3
    • (2001) Curr Biol , vol.11 , pp. 1700-1705
    • Brown, S.1    Hu, N.2    Hombria, J.C.3
  • 39
    • 70449577158 scopus 로고    scopus 로고
    • An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense
    • Souza-Neto JA, Sim S, Dimopoulos G. 2009. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A 106:17841-17846. https://doi.org/10.1073/pnas.090 5006106
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 17841-17846
    • Souza-Neto, J.A.1    Sim, S.2    Dimopoulos, G.3
  • 40
    • 0942298129 scopus 로고    scopus 로고
    • Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection
    • Lin CC, Chou CM, Hsu YL, Lien JC, Wang YM, Chen ST, Tsai SC, Hsiao PW, Huang CJ. 2004. Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection. J Biol Chem 279:3308-3317
    • (2004) J Biol Chem , vol.279 , pp. 3308-3317
    • Lin, C.C.1    Chou, C.M.2    Hsu, Y.L.3    Lien, J.C.4    Wang, Y.M.5    Chen, S.T.6    Tsai, S.C.7    Hsiao, P.W.8    Huang, C.J.9
  • 41
    • 84907700836 scopus 로고    scopus 로고
    • Flavivirus NS5 prevents the InSTATement of IFN
    • Shi PY. 2014. Flavivirus NS5 prevents the InSTATement of IFN. Cell Host Microbe 16:269-271. https://doi.org/10.1016/j.chom.2014.08.011
    • (2014) Cell Host Microbe , vol.16 , pp. 269-271
    • Shi, P.Y.1
  • 44
    • 84864036246 scopus 로고    scopus 로고
    • Dengue virus targets the adaptor protein MITA to subvert host innate immunity
    • Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, Lin YL. 2012. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog 8:e1002780. https://doi.org/10.1371/journal.ppat.1002780
    • (2012) PLoS Pathog , vol.8
    • Yu, C.Y.1    Chang, T.H.2    Liang, J.J.3    Chiang, R.L.4    Lee, Y.L.5    Liao, C.L.6    Lin, Y.L.7
  • 45
    • 84971668027 scopus 로고    scopus 로고
    • Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects
    • Hanners NW, Eitson JL, Usui N, Richardson RB, Wexler EM, Konopka G, Schoggins JW. 2016. Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects. Cell Rep 15:2315-2322. https://doi.org/10.1016/j.celrep.2016.05.075
    • (2016) Cell Rep , vol.15 , pp. 2315-2322
    • Hanners, N.W.1    Eitson, J.L.2    Usui, N.3    Richardson, R.B.4    Wexler, E.M.5    Konopka, G.6    Schoggins, J.W.7
  • 46
    • 79954601093 scopus 로고    scopus 로고
    • Dengue virus modulates the unfolded protein response in a time-dependent manner
    • Peña J, Harris E. 2011. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem 286:14226-14236. https://doi.org/10.1074/jbc. M111.222703
    • (2011) J Biol Chem , vol.286 , pp. 14226-14236
    • Peña, J.1    Harris, E.2
  • 47
    • 77957201605 scopus 로고    scopus 로고
    • The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex
    • Gillespie LK, Hoenen A, Morgan G, Mackenzie JM. 2010. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J Virol 84:10438-10447. https://doi.org/10.1128/JVI.00986-10
    • (2010) J Virol , vol.84 , pp. 10438-10447
    • Gillespie, L.K.1    Hoenen, A.2    Morgan, G.3    Mackenzie, J.M.4
  • 48
    • 84905176062 scopus 로고    scopus 로고
    • Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy
    • Blázquez AB, Escribano-Romero E, Merino-Ramos T, Saiz JC, Martin-Acebes MA. 2014. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol 5:266. https://doi.org/10.3389/fmicb.2014.00266
    • (2014) Front Microbiol , vol.5 , pp. 266
    • Blázquez, A.B.1    Escribano-Romero, E.2    Merino-Ramos, T.3    Saiz, J.C.4    Martin-Acebes, M.A.5
  • 49
    • 33751247922 scopus 로고    scopus 로고
    • Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress
    • Yu CY, Hsu YW, Liao CL, Lin YL. 2006. Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol 80:11868-11880. https://doi.org/10.1128/JVI.00879-06
    • (2006) J Virol , vol.80 , pp. 11868-11880
    • Yu, C.Y.1    Hsu, Y.W.2    Liao, C.L.3    Lin, Y.L.4
  • 50
    • 16244405250 scopus 로고    scopus 로고
    • Hepatitis C virus, ER stress, and oxidative stress
    • Tardif KD, Waris G, Siddiqui A. 2005. Hepatitis C virus, ER stress, and oxidative stress. Trends Microbiol 13:159-163. https://doi.org/10.1016/j.tim.2005.02.004
    • (2005) Trends Microbiol , vol.13 , pp. 159-163
    • Tardif, K.D.1    Waris, G.2    Siddiqui, A.3
  • 51
    • 65449183853 scopus 로고    scopus 로고
    • Viral avoidance and exploitation of the ubiquitin system
    • Randow F, Lehner PJ. 2009. Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol 11:527-534. https://doi.org/10.1038/ncb0509-527
    • (2009) Nat Cell Biol , vol.11 , pp. 527-534
    • Randow, F.1    Lehner, P.J.2
  • 52
    • 67649391002 scopus 로고    scopus 로고
    • Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection
    • Isaacson MK, Ploegh HL. 2009. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 5:559-570. https://doi.org/10.1016/j.chom.2009.05.012
    • (2009) Cell Host Microbe , vol.5 , pp. 559-570
    • Isaacson, M.K.1    Ploegh, H.L.2
  • 53
    • 84949494650 scopus 로고    scopus 로고
    • Production of infectious dengue virus in Aedes aegypti is dependent on the ubiquitin proteasome pathway
    • Choy MM, Sessions OM, Gubler DJ, Ooi EE. 2015. Production of infectious dengue virus in Aedes aegypti is dependent on the ubiquitin proteasome pathway. PLoS Negl Trop Dis 9:e0004227. https://doi.org/10.1371/journal.pntd.0004227
    • (2015) PLoS Negl Trop Dis , vol.9
    • Choy, M.M.1    Sessions, O.M.2    Gubler, D.J.3    Ooi, E.E.4
  • 55
    • 84983431580 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus
    • Wang S, Liu H, Zu X, Liu Y, Chen L, Zhu X, Zhang L, Zhou Z, Xiao G, Wang W. 2016. The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus. Virology 498:116-127. https://doi.org/10.1016/j.virol.2016.08.013
    • (2016) Virology , vol.498 , pp. 116-127
    • Wang, S.1    Liu, H.2    Zu, X.3    Liu, Y.4    Chen, L.5    Zhu, X.6    Zhang, L.7    Zhou, Z.8    Xiao, G.9    Wang, W.10
  • 56
    • 84962436399 scopus 로고    scopus 로고
    • The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-beta production and apoptosis induction
    • Frumence E, Roche M, Krejbich-Trotot P, El-Kalamouni C, Nativel B, Rondeau P, Misse D, Gadea G, Viranaicken W, Despres P. 2016. The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-beta production and apoptosis induction. Virology 493:217-226. https://doi.org/10.1016/j.virol.2016.03.006
    • (2016) Virology , vol.493 , pp. 217-226
    • Frumence, E.1    Roche, M.2    Krejbich-Trotot, P.3    El-Kalamouni, C.4    Nativel, B.5    Rondeau, P.6    Misse, D.7    Gadea, G.8    Viranaicken, W.9    Despres, P.10
  • 57
    • 84945122923 scopus 로고    scopus 로고
    • Analysis of EV71 infection progression using triple-SILAC-based proteomics approach
    • Li HY, Zhang LK, Zhu XJ, Shang J, Chen X, Zhu Y, Guo L. 2015. Analysis of EV71 infection progression using triple-SILAC-based proteomics approach. Proteomics 15:3629-3643. https://doi.org/10.1002/pmic.201500180
    • (2015) Proteomics , vol.15 , pp. 3629-3643
    • Li, H.Y.1    Zhang, L.K.2    Zhu, X.J.3    Shang, J.4    Chen, X.5    Zhu, Y.6    Guo, L.7
  • 58
    • 84928914508 scopus 로고    scopus 로고
    • Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection
    • Chai F, Li HY, Wang W, Zhu XJ, Li Y, Wang S, Guo L, Zhang LK, Xiao G. 2015. Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection. Biochim Biophys Acta 1854:967-978. https://doi.org/10.1016/j.bbapap.2015.04.016
    • (2015) Biochim Biophys Acta , vol.1854 , pp. 967-978
    • Chai, F.1    Li, H.Y.2    Wang, W.3    Zhu, X.J.4    Li, Y.5    Wang, S.6    Guo, L.7    Zhang, L.K.8    Xiao, G.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.