메뉴 건너뛰기




Volumn 6, Issue 6, 2017, Pages 383-392

A quantitative systems physiology model of renal function and blood pressure regulation: Model description

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BLOOD PRESSURE REGULATION; BLOOD VOLUME; CARDIOVASCULAR FUNCTION; DYNAMICS; GLOMERULUS FILTRATION; HEART OUTPUT; HENLE LOOP; HOMEOSTASIS; HUMAN; KIDNEY BLOOD FLOW; KIDNEY DISTAL TUBULE; KIDNEY FUNCTION; KIDNEY PROXIMAL TUBULE; PATHOPHYSIOLOGY; PHARMACOLOGY; PRIORITY JOURNAL; RENIN ANGIOTENSIN ALDOSTERONE SYSTEM; VASOCONSTRICTION; WATER ABSORPTION; BIOLOGICAL MODEL; BLOOD PRESSURE; KIDNEY; PHYSIOLOGY;

EID: 85019657622     PISSN: None     EISSN: 21638306     Source Type: Journal    
DOI: 10.1002/psp4.12178     Document Type: Article
Times cited : (38)

References (43)
  • 2
    • 0016208885 scopus 로고
    • A systems analysis approach to understanding long-range arterial blood pressure control and hypertension
    • Guyton, A.C. et al. A systems analysis approach to understanding long-range arterial blood pressure control and hypertension. Circ. Res. 35, 159-176 (1974).
    • (1974) Circ. Res. , vol.35 , pp. 159-176
    • Guyton, A.C.1
  • 3
    • 0025011680 scopus 로고
    • Long-term arterial pressure control: An analysis from animal experiments and computer and graphic models
    • Guyton, A.C. Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am. J. Physiol. 259, R865-877 (1990).
    • (1990) Am. J. Physiol. , vol.259 , pp. R865-R877
    • Guyton, A.C.1
  • 5
    • 29144453338 scopus 로고    scopus 로고
    • Long-term mathematical model involving renal sympathetic nerve activity arterial pressure, and sodium excretion
    • Karaaslan, F., Denizhan, Y., Kayserilioglu, A. & Gulcur, H.O. Long-term mathematical model involving renal sympathetic nerve activity arterial pressure, and sodium excretion. Ann. Biomed. Eng. 33, 1607-1630 (2005).
    • (2005) Ann. Biomed. Eng. , vol.33 , pp. 1607-1630
    • Karaaslan, F.1    Denizhan, Y.2    Kayserilioglu, A.3    Gulcur, H.O.4
  • 6
    • 84870320134 scopus 로고    scopus 로고
    • A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: A mathematical modelling approach
    • Averina, V.A., Othmer, H.G., Fink, G.D. & Osborn, J.W. A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach. J. Physiol. 590, 5975-5992 (2012).
    • (2012) J. Physiol. , vol.590 , pp. 5975-5992
    • Averina, V.A.1    Othmer, H.G.2    Fink, G.D.3    Osborn, J.W.4
  • 7
    • 84860791175 scopus 로고    scopus 로고
    • Mechanisms of pressure-diuresis and pressure-natriuresis in Dahl salt-resistant and Dahl salt-sensitive rats
    • Beard, D.A. & Mescam, M. Mechanisms of pressure-diuresis and pressure-natriuresis in Dahl salt-resistant and Dahl salt-sensitive rats. BMC Physiol. 12, 6 (2012).
    • (2012) BMC Physiol. , vol.12 , pp. 6
    • Beard, D.A.1    Mescam, M.2
  • 8
    • 84900545175 scopus 로고    scopus 로고
    • Dominant factors that govern pressure natriuresis in diuresis and antidiuresis: A mathematical model
    • Moss, R. & Layton, A.T. Dominant factors that govern pressure natriuresis in diuresis and antidiuresis: a mathematical model. Am. J. Physiol. Renal Physiol. 306, F952-969 (2014).
    • (2014) Am. J. Physiol. Renal Physiol. , vol.306 , pp. F952-F969
    • Moss, R.1    Layton, A.T.2
  • 9
    • 0022498052 scopus 로고
    • A mathematical model of the rat proximal tubule
    • Weinstein, A.M. A mathematical model of the rat proximal tubule. Am. J. Physiol. 250, F860-873 (1986).
    • (1986) Am. J. Physiol. , vol.250 , pp. F860-F873
    • Weinstein, A.M.1
  • 10
    • 34147149220 scopus 로고    scopus 로고
    • Flow-dependent transport in a mathematical model of rat proximal tubule
    • Weinstein, A.M. et al. Flow-dependent transport in a mathematical model of rat proximal tubule. Am. J. Physiol. Renal Physiol. 292, F1164-1181 (2007).
    • (2007) Am. J. Physiol. Renal Physiol. , vol.292 , pp. F1164-F1181
    • Weinstein, A.M.1
  • 11
    • 84930859200 scopus 로고    scopus 로고
    • A mathematical model of rat proximal tubule and loop of Henle
    • Weinstein, A.M. A mathematical model of rat proximal tubule and loop of Henle. Am. J. Physiol. Renal Physiol. 308, F1076-1097 (2015).
    • (2015) Am. J. Physiol. Renal Physiol. , vol.308 , pp. F1076-F1097
    • Weinstein, A.M.1
  • 12
    • 77956486708 scopus 로고    scopus 로고
    • Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension
    • Edwards, A. & Layton, A.T. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension. Am. J. Physiol. Renal Physiol. 299, F616-633 (2010).
    • (2010) Am. J. Physiol. Renal Physiol. , vol.299 , pp. F616-F633
    • Edwards, A.1    Layton, A.T.2
  • 13
    • 79551573862 scopus 로고    scopus 로고
    • A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results
    • Layton, A.T. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. Am. J. Physiol. Renal Physiol. 300, F356-371 (2011).
    • (2011) Am. J. Physiol. Renal Physiol. , vol.300 , pp. F356-F371
    • Layton, A.T.1
  • 14
    • 84931095114 scopus 로고    scopus 로고
    • Modeling oxygen consumption in the proximal tubule: Effects of NHE and SGLT2 inhibition
    • Layton, A.T., Vallon, V. & Edwards, A. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am. J. Physiol. Renal Physiol. 308, F1343-1357 (2015).
    • (2015) Am. J. Physiol. Renal Physiol. , vol.308 , pp. F1343-F1357
    • Layton, A.T.1    Vallon, V.2    Edwards, A.3
  • 15
    • 84865513524 scopus 로고    scopus 로고
    • HumMod: A Modeling environment for the simulation of integrative human physiology
    • Hester, R.L. et al. HumMod: A Modeling environment for the simulation of integrative human physiology. Front. Physiol. 2, 12 (2011).
    • (2011) Front. Physiol. , vol.2 , pp. 12
    • Hester, R.L.1
  • 16
    • 0019512239 scopus 로고
    • A mathematical model of fluid transport in the kidney
    • Jensen, P.K., Christensen, O. & Steven, K. A mathematical model of fluid transport in the kidney. Acta Physiol. Scand. 112, 373-385 (1981).
    • (1981) Acta Physiol. Scand. , vol.112 , pp. 373-385
    • Jensen, P.K.1    Christensen, O.2    Steven, K.3
  • 17
    • 84900522345 scopus 로고    scopus 로고
    • A model-based approach to investigating the pathophysiological mechanisms of hypertension and response to antihypertensive therapies: Extending the Guyton model
    • Hallow, K.M. et al. A model-based approach to investigating the pathophysiological mechanisms of hypertension and response to antihypertensive therapies: extending the Guyton model. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R647-662 (2014).
    • (2014) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.306 , pp. R647-R662
    • Hallow, K.M.1
  • 19
    • 0016326167 scopus 로고
    • Characteristics of the relationship between the flow rate of tubular fluid and potassium transport in the distal tubule of the rat
    • Kunau, R.T., Jr., Webb, H.L. & Borman, S.C. Characteristics of the relationship between the flow rate of tubular fluid and potassium transport in the distal tubule of the rat. J. Clin. Investig. 54, 1488-1495 (1974).
    • (1974) J. Clin. Investig. , vol.54 , pp. 1488-1495
    • Kunau, R.T.1    Webb, H.L.2    Borman, S.C.3
  • 22
    • 84926643348 scopus 로고    scopus 로고
    • Integrated control of Na transport along the nephron
    • Palmer, L.G. & Schnermann, J. Integrated control of Na transport along the nephron. Clin. J. Am. Soc. Nephrol. 10, 676-687 (2015).
    • (2015) Clin. J. Am. Soc. Nephrol. , vol.10 , pp. 676-687
    • Palmer, L.G.1    Schnermann, J.2
  • 23
    • 0031430346 scopus 로고    scopus 로고
    • Potential role of luminal potassium in tubuloglomerular feedback
    • Vallon, V., Osswald, H., Blantz, R.C. & Thomson, S. Potential role of luminal potassium in tubuloglomerular feedback. J. Am. Soc. Nephrol. 8, 1831-1837 (1997).
    • (1997) J. Am. Soc. Nephrol. , vol.8 , pp. 1831-1837
    • Vallon, V.1    Osswald, H.2    Blantz, R.C.3    Thomson, S.4
  • 24
    • 0028212586 scopus 로고
    • Mathematical model of cardiovascular mechanics for diagnostic analysis and treatment of heart failure: Part 1. Model description and theoretical analysis
    • Tsuruta, H., Sato, T., Shirataka, M. & Ikeda, N. Mathematical model of cardiovascular mechanics for diagnostic analysis and treatment of heart failure: part 1. Model description and theoretical analysis. Med. Biol. Eng. Comput. 32, 3-11 (1994).
    • (1994) Med. Biol. Eng. Comput. , vol.32 , pp. 3-11
    • Tsuruta, H.1    Sato, T.2    Shirataka, M.3    Ikeda, N.4
  • 25
    • 0037403176 scopus 로고    scopus 로고
    • Modeling the relation between cardiac pump function and myofiber mechanics
    • Arts, T., Bovendeerd, P., Delhaas, T. & Prinzen, F. Modeling the relation between cardiac pump function and myofiber mechanics. J. Biomech. 36, 731-736 (2003).
    • (2003) J. Biomech. , vol.36 , pp. 731-736
    • Arts, T.1    Bovendeerd, P.2    Delhaas, T.3    Prinzen, F.4
  • 27
    • 77953538736 scopus 로고    scopus 로고
    • Modulation of pressure-natriuresis by renal med-ullary reactive oxygen species and nitric oxide
    • O'Connor, P.M. & Cowley, A.W, Jr. Modulation of pressure-natriuresis by renal med-ullary reactive oxygen species and nitric oxide. Curr. Hypertens. Rep. 12, 86-92 (2010).
    • (2010) Curr. Hypertens. Rep. , vol.12 , pp. 86-92
    • O'Connor, P.M.1    Cowley, A.W.2
  • 28
    • 0344060651 scopus 로고
    • Role of renal interstitial hydrostatic pressure in the pressure diuresis response
    • Garcia-Estan, J. & Roman, R.J. Role of renal interstitial hydrostatic pressure in the pressure diuresis response. Am. J. Physiol. 256, F63-70 (1989).
    • (1989) Am. J. Physiol. , vol.256 , pp. F63-F70
    • Garcia-Estan, J.1    Roman, R.J.2
  • 29
    • 0025357487 scopus 로고
    • Transepithelial osmolality differences, hydraulic conductivities, and volume absorption in the proximal tubule
    • Schafer, J.A. Transepithelial osmolality differences, hydraulic conductivities, and volume absorption in the proximal tubule. Annu. Ref. Physiol. 52, 709-726 (1990).
    • (1990) Annu. Ref. Physiol. , vol.52 , pp. 709-726
    • Schafer, J.A.1
  • 30
    • 77949801479 scopus 로고    scopus 로고
    • Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure
    • McDonough, A.A. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R851-861 (2010).
    • (2010) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.298 , pp. R851-R861
    • McDonough, A.A.1
  • 31
    • 0027471758 scopus 로고
    • Role of renal interstitial hydrostatic pressure in natriuresis of systemic nitric oxide inhibition
    • Haas, J.A., Khraibi, A.A., Perrella, M.A. & Knox, F.G. Role of renal interstitial hydrostatic pressure in natriuresis of systemic nitric oxide inhibition. Am. J. Physiol. 264, F411-414 (1993).
    • (1993) Am. J. Physiol. , vol.264 , pp. F411-F414
    • Haas, J.A.1    Khraibi, A.A.2    Perrella, M.A.3    Knox, F.G.4
  • 32
    • 0031983635 scopus 로고    scopus 로고
    • Effects of renal perfusion pressure on renal interstitial hydrostatic pressure and Na1 excretion: Role of endothelium-derived nitric oxide
    • Nakamura, T. et al. Effects of renal perfusion pressure on renal interstitial hydrostatic pressure and Na1 excretion: role of endothelium-derived nitric oxide. Nephron 78, 104-111 (1998).
    • (1998) Nephron , vol.78 , pp. 104-111
    • Nakamura, T.1
  • 33
    • 0025044635 scopus 로고
    • Influence of prostaglandins on papillary blood flow and pressure-natriuretic response
    • Roman, R.J. & Lianos, E. Influence of prostaglandins on papillary blood flow and pressure-natriuretic response. Hypertension 15, 29-35 (1990).
    • (1990) Hypertension , vol.15 , pp. 29-35
    • Roman, R.J.1    Lianos, E.2
  • 34
    • 0024351109 scopus 로고
    • Atrial natriuretic peptide and pressure natriuresis: Interactions with the renin-angiotensin system
    • Mizelle, H.L., Hall, J.E. & Hildebrandt, D.A. Atrial natriuretic peptide and pressure natriuresis: interactions with the renin-angiotensin system. Am. J. Physiol. 257, R1169-1174 (1989).
    • (1989) Am. J. Physiol. , vol.257 , pp. R1169-R1174
    • Mizelle, H.L.1    Hall, J.E.2    Hildebrandt, D.A.3
  • 35
    • 84924027120 scopus 로고    scopus 로고
    • Renal mechanisms of salt-sensitive hypertension: Contribution of two steroid receptor-associated pathways
    • Nishimoto, M. & Fujita, T. Renal mechanisms of salt-sensitive hypertension: contribution of two steroid receptor-associated pathways. Am. J. Physiol. Renal Physiol. 308, F377-387 (2015).
    • (2015) Am. J. Physiol. Renal Physiol. , vol.308 , pp. F377-F387
    • Nishimoto, M.1    Fujita, T.2
  • 36
    • 0026666056 scopus 로고
    • Relation between vasa recta blood flow and renal interstitial hydrostatic pressure during pressure natriuresis
    • Farrugia, E., Lockhart, J.C. & Larson, T.S. Relation between vasa recta blood flow and renal interstitial hydrostatic pressure during pressure natriuresis. Circ. Res. 71, 1153-1158 (1992).
    • (1992) Circ. Res. , vol.71 , pp. 1153-1158
    • Farrugia, E.1    Lockhart, J.C.2    Larson, T.S.3
  • 38
    • 0015062994 scopus 로고
    • Whole-body circulatory autoregulation and hypertension
    • Coleman, T.G., Granger, H.J. & Guyton, A.C. Whole-body circulatory autoregulation and hypertension. Circ. Res. 28(suppl 2), 76-87 (1971).
    • (1971) Circ. Res. , vol.28 , pp. 76-87
    • Coleman, T.G.1    Granger, H.J.2    Guyton, A.C.3
  • 39
    • 84900545473 scopus 로고    scopus 로고
    • Using a systems biology approach to explore hypotheses underlying clinical diversity of the renin angiotensin system and the response to antihypertensive therapies
    • (ed. Peck HHCKCC), Springer, New York
    • Lo, A. et al. Using a systems biology approach to explore hypotheses underlying clinical diversity of the renin angiotensin system and the response to antihypertensive therapies. In Clinical Trial Simulations (ed. Peck HHCKCC), Springer, New York (2011).
    • (2011) Clinical Trial Simulations
    • Lo, A.1
  • 40
    • 0029586615 scopus 로고
    • Homeostatic efficiency of tubuloglomerular feedback is reduced in established diabetes mellitus in rats
    • Vallon, V., Blantz, R.C. & Thomson, S. Homeostatic efficiency of tubuloglomerular feedback is reduced in established diabetes mellitus in rats. Am. J. Physiol. 269, F876-883 (1995).
    • (1995) Am. J. Physiol. , vol.269 , pp. F876-F883
    • Vallon, V.1    Blantz, R.C.2    Thomson, S.3
  • 41
    • 84956753457 scopus 로고    scopus 로고
    • A tutorial on RxODE: Simulating differential equation pharmacometric models in R. CPT Pharmacometr
    • Wang, W., Hallow, K.M. & James, D.A. A tutorial on RxODE: simulating differential equation pharmacometric models in R. CPT Pharmacometr. Syst. Pharmacol. 5, 3-10 (2016).
    • (2016) Syst. Pharmacol. , vol.5 , pp. 3-10
    • Wang, W.1    Hallow, K.M.2    James, D.A.3
  • 42
    • 0017265128 scopus 로고
    • The effect of dietary sodium chloride on blood pressure, body fluids, electrolytes, renal function, and serum lipids of normotensive man
    • Kirkendall, A.M. et al. The effect of dietary sodium chloride on blood pressure, body fluids, electrolytes, renal function, and serum lipids of normotensive man. J. Lab. Clin. Med. 87, 411-434 (1976).
    • (1976) J. Lab. Clin. Med. , vol.87 , pp. 411-434
    • Kirkendall, A.M.1
  • 43
    • 0033996920 scopus 로고    scopus 로고
    • High dietary sodium chloride consumption may not induce body fluid retention in humans
    • Heer, M., Baisch, F., Kropp, J., Gerzer, R. & Drummer, C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am. J. Physiol. Renal Physiol. 278, F585-595 (2000).
    • (2000) Am. J. Physiol. Renal Physiol. , vol.278 , pp. F585-F595
    • Heer, M.1    Baisch, F.2    Kropp, J.3    Gerzer, R.4    Drummer, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.