-
1
-
-
84870239334
-
Active learning of inverse models with intrinsically motivated goal exploration in robots
-
A. Baranes and P.-Y. Oudeyer. Active learning of inverse models with intrinsically motivated goal exploration in robots. Robotics and Autonomous Systems, 61(1): 49-73, 2013.
-
(2013)
Robotics and Autonomous Systems
, vol.61
, Issue.1
, pp. 49-73
-
-
Baranes, A.1
Oudeyer, P.-Y.2
-
2
-
-
0141988716
-
Recent advances in hierarchical reinforcement learning
-
A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems, 13(4): 341-379, 2003.
-
(2003)
Discrete Event Dynamic Systems
, vol.13
, Issue.4
, pp. 341-379
-
-
Barto, A.G.1
Mahadevan, S.2
-
5
-
-
0001158047
-
Improving generalization for temporal difference learning: The successor representation
-
P. Dayan. Improving generalization for temporal difference learning: The successor representation. Neural Computation, 5(4): 613-624, 1993.
-
(1993)
Neural Computation
, vol.5
, Issue.4
, pp. 613-624
-
-
Dayan, P.1
-
6
-
-
0002278788
-
Hierarchical reinforcement learning with the maxq value function decomposition
-
T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function decomposition. J. Artif. Intell. Res.(JAIR), 13: 227-303, 2000.
-
(2000)
J. Artif. Intell. Res.(JAIR)
, vol.13
, pp. 227-303
-
-
Dietterich, T.G.1
-
8
-
-
84989317394
-
-
arXiv preprint arXiv: 1603.08575
-
S. Eslami, N. Heess, T. Weber, Y. Tassa, K. Kavukcuoglu, and G. E. Hinton. Attend, infer, repeat: Fast scene understanding with generative models. arXiv preprint arXiv: 1603.08575, 2016.
-
(2016)
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
-
-
Eslami, S.1
Heess, N.2
Weber, T.3
Tassa, Y.4
Kavukcuoglu, K.5
Hinton, G.E.6
-
9
-
-
85019183591
-
Curiosity driven reinforcement learning for motion planning on humanoids
-
M. Frank, J. Leitner, M. Stollenga, A. Förster, and J. Schmidhuber. Curiosity driven reinforcement learning for motion planning on humanoids. Intrinsic motivations and open-ended development in animals, humans, and robots, page 245, 2015.
-
(2015)
Intrinsic Motivations and Open-ended Development in Animals, Humans, and Robots
, pp. 245
-
-
Frank, M.1
Leitner, J.2
Stollenga, M.3
Förster, A.4
Schmidhuber, J.5
-
10
-
-
29344435556
-
Subgoal discovery for hierarchical reinforcement learning using learned policies
-
S. Goel and M. Huber. Subgoal discovery for hierarchical reinforcement learning using learned policies. In FLAIRS conference, pages 346-350, 2003.
-
(2003)
FLAIRS Conference
, pp. 346-350
-
-
Goel, S.1
Huber, M.2
-
11
-
-
84880803349
-
Generalizing plans to new environments in relational mdps
-
C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new environments in relational mdps. In Proceedings of International Joint conference on Artificial Intelligence, pages 1003-1010, 2003.
-
(2003)
Proceedings of International Joint Conference on Artificial Intelligence
, pp. 1003-1010
-
-
Guestrin, C.1
Koller, D.2
Gearhart, C.3
Kanodia, N.4
-
12
-
-
4544318426
-
Efficient solution algorithms for factored mdps
-
C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms for factored mdps. Journal of Artificial Intelligence Research, pages 399-468, 2003.
-
(2003)
Journal of Artificial Intelligence Research
, pp. 399-468
-
-
Guestrin, C.1
Koller, D.2
Parr, R.3
Venkataraman, S.4
-
15
-
-
84971448181
-
-
arXiv preprint arXiv: 1602.01783
-
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv: 1602.01783, 2016.
-
(2016)
Asynchronous Methods for Deep Reinforcement Learning
-
-
Mnih, V.1
Badia, A.P.2
Mirza, M.3
Graves, A.4
Lillicrap, T.P.5
Harley, T.6
Silver, D.7
Kavukcuoglu, K.8
-
16
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, et al. Human-level control through deep reinforcement learning. Nature, 518(7540): 529-533, 2015.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
-
17
-
-
84965128263
-
Variational information maximisation for intrinsically motivated reinforcement learning
-
S. Mohamed and D. J. Rezende. Variational information maximisation for intrinsically motivated reinforcement learning. In Advances in Neural Information Processing Systems, pages 2116-2124, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2116-2124
-
-
Mohamed, S.1
Rezende, D.J.2
-
18
-
-
84980007683
-
-
arXiv preprint arXiv: 1507.04296
-
A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershelvam, et al. Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv: 1507.04296, 2015.
-
(2015)
Massively Parallel Methods for Deep Reinforcement Learning
-
-
Nair, A.1
Srinivasan, P.2
Blackwell, S.3
Alcicek, C.4
Fearon, R.5
De Maria, A.6
Panneershelvam, V.7
-
20
-
-
84891105730
-
What is intrinsic motivation? A typology of computational approaches
-
P.-Y. Oudeyer and F. Kaplan. What is intrinsic motivation? a typology of computational approaches. Frontiers in neurorobotics, 1: 6, 2009.
-
(2009)
Frontiers in Neurorobotics
, vol.1
, pp. 6
-
-
Oudeyer, P.-Y.1
Kaplan, F.2
-
21
-
-
84969760283
-
Universal value function approximators
-
T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 1312-1320, 2015.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
, pp. 1312-1320
-
-
Schaul, T.1
Horgan, D.2
Gregor, K.3
Silver, D.4
-
22
-
-
77956578648
-
Formal theory of creativity, fun, and intrinsic motivation (1990-2010)
-
J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990-2010). Autonomous Mental Development, IEEE Transactions on, 2(3): 230-247, 2010.
-
(2010)
Autonomous Mental Development, IEEE Transactions on
, vol.2
, Issue.3
, pp. 230-247
-
-
Schmidhuber, J.1
-
23
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, et al. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587): 484-489, 2016.
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
Van Den Driessche, G.6
Schrittwieser, J.7
-
26
-
-
79953822184
-
Intrinsically motivated reinforcement learning: An evolutionary perspective
-
S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg. Intrinsically motivated reinforcement learning: An evolutionary perspective. Autonomous Mental Development, IEEE Transactions on, 2(2): 70-82, 2010.
-
(2010)
Autonomous Mental Development, IEEE Transactions on
, vol.2
, Issue.2
, pp. 70-82
-
-
Singh, S.1
Lewis, R.L.2
Barto, A.G.3
Sorg, J.4
-
33
-
-
84899464022
-
Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction
-
R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup. Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction. In The 10th International Conference on Autonomous Agents and Multiagent Systems, pages 761-768, 2011.
-
(2011)
The 10th International Conference on Autonomous Agents and Multiagent Systems
, pp. 761-768
-
-
Sutton, R.S.1
Modayil, J.2
Delp, M.3
Degris, T.4
Pilarski, P.M.5
White, A.6
Precup, D.7
-
34
-
-
0033170372
-
Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning
-
R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1): 181-211, 1999.
-
(1999)
Artificial Intelligence
, vol.112
, Issue.1
, pp. 181-211
-
-
Sutton, R.S.1
Precup, D.2
Singh, S.3
-
35
-
-
84937951926
-
Universal option models
-
C. Szepesvari, R. S. Sutton, J. Modayil, S. Bhatnagar, et al. Universal option models. In Advances in Neural Information Processing Systems, pages 990-998, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 990-998
-
-
Szepesvari, C.1
Sutton, R.S.2
Modayil, J.3
Bhatnagar, S.4
|