메뉴 건너뛰기




Volumn 1, Issue , 2010, Pages 31-38

Linear options

Author keywords

Reinforcement Learning; Temporal Abstraction

Indexed keywords

ABSTRACTING; MULTI AGENT SYSTEMS; REINFORCEMENT LEARNING;

EID: 84868298774     PISSN: 15488403     EISSN: 15582914     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (26)

References (13)
  • 1
    • 0036832950 scopus 로고    scopus 로고
    • Technical update: Least-squares temporal difference learning
    • Justin A. Boyan. Technical update: Least-squares temporal difference learning. Machine Learning, 49(2-3):233-246, 2002.
    • (2002) Machine Learning , vol.49 , Issue.2-3 , pp. 233-246
    • Boyan, J.A.1
  • 2
    • 0001771345 scopus 로고    scopus 로고
    • Linear least-squares algorithms for temporal difference learning
    • Steven J. Bradtke and Andrew G. Barto. Linear least-squares algorithms for temporal difference learning. Machine Learning, 22(1-3):33-57, 1996.
    • (1996) Machine Learning , vol.22 , Issue.1-3 , pp. 33-57
    • Bradtke, S.J.1    Barto, A.G.2
  • 3
    • 40249088278 scopus 로고    scopus 로고
    • Learning relational options for inductive transfer in relational reinforcement learning
    • T. Croonenborghs, K. Driessens, and M. Bruynooghe. Learning relational options for inductive transfer in relational reinforcement learning. Lecture Notes in Computer Science, 4894:88, 2008.
    • (2008) Lecture Notes in Computer Science , vol.4894 , pp. 88
    • Croonenborghs, T.1    Driessens, K.2    Bruynooghe, M.3
  • 4
    • 0002278788 scopus 로고    scopus 로고
    • Hierarchical reinforcement learning with the MAXQ value function decomposition
    • Thomas Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. Journal of Artificial Intelligence Research, 13:227-303, 1998.
    • (1998) Journal of Artificial Intelligence Research , vol.13 , pp. 227-303
    • Dietterich, T.1
  • 10
    • 0033170372 scopus 로고    scopus 로고
    • Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning
    • Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181-211, 1999.
    • (1999) Artificial Intelligence , vol.112 , pp. 181-211
    • Sutton, R.1    Precup, D.2    Singh, S.3
  • 11
    • 85132026293 scopus 로고
    • Integrated architectures for learning, planning, and reacting based on approximating dynamic programming
    • Richard S. Sutton. Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming. In The Seventh International Conference on Machine Learning, pages 216-224, 1990.
    • (1990) The Seventh International Conference on Machine Learning , pp. 216-224
    • Sutton, R.S.1
  • 13
    • 0031143730 scopus 로고    scopus 로고
    • An analysis of temporal-difference learning with function approximation
    • John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with function approximation. IEEE Transactions on Automatic Control, 42:674-690, 1997.
    • (1997) IEEE Transactions on Automatic Control , vol.42 , pp. 674-690
    • Tsitsiklis, J.N.1    Van Roy, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.