-
1
-
-
84857920401
-
Fracture healing under healthy and inflammatory conditions
-
Claes, L., Recknagel, S. & Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8, 133-143, doi:10.1038/nrrheum.2012.1 (2012).
-
(2012)
Nat. Rev. Rheumatol
, vol.8
, pp. 133-143
-
-
Claes, L.1
Recknagel, S.2
Ignatius, A.3
-
2
-
-
0042978778
-
Impaired fracture healing in the absence of TNF-alpha signaling: The role of TNF-alpha in endochondral cartilage resorption
-
Gerstenfeld, L. C. et al. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J. Bone Miner. Res. 18, 1584-1592, doi:10.1359/jbmr.2003.18.9.1584 (2003).
-
(2003)
J. Bone Miner. Res
, vol.18
, pp. 1584-1592
-
-
Gerstenfeld, L.C.1
-
3
-
-
84929643167
-
Osteoimmunology: Major and costimulatory pathway expression associated with chronic inflammatory induced bone loss, osteoimmunology: Major and costimulatory pathway expression associated with chronic inflammatory induced bone loss
-
Crotti, T. N. et al. Osteoimmunology: Major and Costimulatory Pathway Expression Associated with Chronic Inflammatory Induced Bone Loss, Osteoimmunology: Major and Costimulatory Pathway Expression Associated with Chronic Inflammatory Induced Bone Loss. J. Immunol. Res. 2015(1-13), e281287, doi:10.1155/2015/281287 (2015).
-
(2015)
J. Immunol. Res
, vol.2015
, Issue.1-13
, pp. e281287
-
-
Crotti, T.N.1
-
4
-
-
79960944057
-
Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles
-
György, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667-2688, doi:10.1007/s00018-011-0689-3 (2011).
-
(2011)
Cell. Mol. Life Sci
, vol.68
, pp. 2667-2688
-
-
György, B.1
-
5
-
-
0036237642
-
The biogenesis and functions of exosomes
-
Stoorvogel, W., Kleijmeer, M. J., Geuze, H. J. & Raposo, G. The biogenesis and functions of exosomes. Traffic 3, 321-330, doi:10.1034/j.1600-0854.2002.30502.x (2002).
-
(2002)
Traffic
, vol.3
, pp. 321-330
-
-
Stoorvogel, W.1
Kleijmeer, M.J.2
Geuze, H.J.3
Raposo, G.4
-
6
-
-
84863439963
-
Toward tailored exosomes: The exosomal tetraspanin web contributes to target cell selection
-
Rana, S., Yue, S., Stadel, D. & Zöller, M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int. J. Biochem. Cell Biol. 44, 1574-1584, doi:10.1016/j.biocel.2012.06.018 (2012).
-
(2012)
Int. J. Biochem. Cell Biol
, vol.44
, pp. 1574-1584
-
-
Rana, S.1
Yue, S.2
Stadel, D.3
Zöller, M.4
-
7
-
-
85016490706
-
Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting
-
Wiklander, O. P. B. et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 4, 26316, doi:10.3402/jev.v4.26316 (2015).
-
(2015)
J. Extracell. Vesicles
, vol.4
, pp. 26316
-
-
Wiklander, O.P.B.1
-
8
-
-
84859515309
-
The multifaceted exosome: Biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities
-
Pant, S., Hilton, H. & Burczynski, M. E. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol. 83, 1484-1494, doi:10.1016/j.bcp.2011.12.037 (2012).
-
(2012)
Biochem. Pharmacol
, vol.83
, pp. 1484-1494
-
-
Pant, S.1
Hilton, H.2
Burczynski, M.E.3
-
9
-
-
85014619748
-
Biological properties of extracellular vesicles and their physiological functions
-
Yáñez-Mó, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066, doi:10.3402/jev.v4.27066 (2015).
-
(2015)
J. Extracell. Vesicles
, vol.4
, pp. 27066
-
-
Yáñez-Mó, M.1
-
10
-
-
84968866526
-
Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine
-
Fais, S. et al. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano 10, 3886-3899, doi:10.1021/acsnano.5b08015 (2016).
-
(2016)
ACS Nano
, vol.10
, pp. 3886-3899
-
-
Fais, S.1
-
11
-
-
84960337763
-
Communication by extracellular vesicles: Where we are and where we need to go
-
Tkach, M. & Théry, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 164, 1226-1232, doi:10.1016/j.cell.2016.01.043 (2016).
-
(2016)
Cell
, vol.164
, pp. 1226-1232
-
-
Tkach, M.1
Théry, C.2
-
12
-
-
78049457566
-
Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration
-
Esser, J. et al. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J. Allergy Clin. Immunol. 126, 1032-1040, doi:10.1016/j.jaci.2010.06.039 (2010).
-
(2010)
J. Allergy Clin. Immunol
, vol.126
, pp. 1032-1040
-
-
Esser, J.1
-
13
-
-
85038124867
-
Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases
-
Zhao, Q., Ren, H. & Han, Z. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. J. Cell. Immunother. 2, 3-20, doi:10.1016/j.jocit.2014.12.001 (2016).
-
(2016)
J. Cell. Immunother
, vol.2
, pp. 3-20
-
-
Zhao, Q.1
Ren, H.2
Han, Z.3
-
14
-
-
85000351063
-
Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration
-
Silva, A. M. et al. Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration. Eur. J. Pharm. Sci. 98, 86-95, doi:10.1016/j.ejps.2016.09.017 (2016).
-
(2016)
Eur. J. Pharm. Sci
, vol.98
, pp. 86-95
-
-
Silva, A.M.1
-
15
-
-
84883729239
-
Mesenchymal stem cells in tissue repair
-
DiMarino, A. M., Caplan, A. I. & Bonfield, T. L. Mesenchymal Stem Cells in Tissue Repair. Front. Immunol. 4, article 201, doi:10.3389/fimmu.2013.00201 (2013).
-
(2013)
Front. Immunol
, vol.4
-
-
DiMarino, A.M.1
Caplan, A.I.2
Bonfield, T.L.3
-
16
-
-
84892479206
-
Mesenchymal stem cells home to sites of injury and inflammation
-
Rustad, K. C. & Gurtner, G. C. Mesenchymal Stem Cells Home to Sites of Injury and Inflammation. Adv. Wound Care 1, 147-152, doi:10.1089/wound.2011.0314 (2012).
-
(2012)
Adv. Wound Care
, vol.1
, pp. 147-152
-
-
Rustad, K.C.1
Gurtner, G.C.2
-
17
-
-
84897542839
-
Resveratrol as a natural anti-tumor necrosis factor-molecule: Implications to dendritic cells and their crosstalk with mesenchymal stromal cells
-
Silva, A. M. et al. Resveratrol as a Natural Anti-Tumor Necrosis Factor-Molecule: Implications to Dendritic Cells and Their Crosstalk with Mesenchymal Stromal Cells. PLoS ONE 9, e91406, doi:10.1371/journal.pone.0091406 (2014).
-
(2014)
PLoS ONE
, vol.9
, pp. e91406
-
-
Silva, A.M.1
-
18
-
-
84856583891
-
Enhanced mesenchymal stromal cell recruitment via natural killer cells by incorporation of inflammatory signals in biomaterials
-
Almeida, C. R., Vasconcelos, D. P., Gonçalves, R. M. & Barbosa, M. A. Enhanced mesenchymal stromal cell recruitment via natural killer cells by incorporation of inflammatory signals in biomaterials. J. R. Soc. Interface 9, 261-271, doi:10.1098/rsif.2011.0357 (2012).
-
(2012)
J. R. Soc Interface
, vol.9
, pp. 261-271
-
-
Almeida, C.R.1
Vasconcelos, D.P.2
Gonçalves, R.M.3
Barbosa, M.A.4
-
19
-
-
84884254033
-
Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells
-
Ekström, K. et al. Monocyte Exosomes Stimulate the Osteogenic Gene Expression of Mesenchymal Stem Cells. PLoS ONE 8, e75227, doi:10.1371/journal.pone.0075227 (2013).
-
(2013)
PLoS ONE
, vol.8
, pp. e75227
-
-
Ekström, K.1
-
20
-
-
84960875945
-
Inflammation, fracture and bone repair
-
Loi, F. et al. Inflammation, fracture and bone repair. Bone 86, 119-130, doi:10.1016/j.bone.2016.02.020 (2016).
-
(2016)
Bone
, vol.86
, pp. 119-130
-
-
Loi, F.1
-
21
-
-
85016448020
-
Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles
-
Lötvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913, doi:10.3402/jev.v3.26913 (2014).
-
(2014)
J. Extracell. Vesicles
, vol.3
, pp. 26913
-
-
Lötvall, J.1
-
22
-
-
84959386845
-
Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes
-
Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA 113, E968-977, doi:10.1073/pnas.1521230113 (2016).
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. E968-977
-
-
Kowal, J.1
-
23
-
-
84874377202
-
Extracellular vesicles: Exosomes, microvesicles, and friends
-
Raposo, G. & Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 200, 373-383, doi:10.1083/jcb.201211138 (2013).
-
(2013)
J. Cell Biol
, vol.200
, pp. 373-383
-
-
Raposo, G.1
Stoorvogel, W.2
-
24
-
-
84907818281
-
Exosomes: Novel effectors of human platelet lysate activity
-
Torreggiani, E. et al. Exosomes: novel effectors of human platelet lysate activity. Eur. Cell. Mater. 28, 137-151, doi:10.22203/eCM (2014).
-
(2014)
Eur. Cell. Mater
, vol.28
, pp. 137-151
-
-
Torreggiani, E.1
-
25
-
-
84936766922
-
Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration
-
Nakamura, Y. et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett. 589, 1257-1265, doi:10.1016/j.febslet.2015.03.031 (2015).
-
(2015)
FEBS Lett
, vol.589
, pp. 1257-1265
-
-
Nakamura, Y.1
-
26
-
-
84995893195
-
Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model
-
2015-0285
-
Furuta, T. et al. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Transl. Med. sctm. 5, 2015-0285, doi:10.5966/sctm.2015-0285 (2016).
-
(2016)
Stem Cells Transl. Med. Sctm
, vol.5
-
-
Furuta, T.1
-
27
-
-
84959421655
-
Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo
-
Qin, Y., Wang, L., Gao, Z., Chen, G. & Zhang, C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci. Rep. 6, 21961, doi:10.1038/srep21961 (2016).
-
(2016)
Sci. Rep
, vol.6
, pp. 21961
-
-
Qin, Y.1
Wang, L.2
Gao, Z.3
Chen, G.4
Zhang, C.5
-
28
-
-
84970990794
-
Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats
-
Qi, X. et al. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats. Int. J. Biol. Sci. 12, 836-849, doi:10.7150/ijbs.14809 (2016).
-
(2016)
Int. J. Biol. Sci
, vol.12
, pp. 836-849
-
-
Qi, X.1
-
29
-
-
84960799269
-
Extracellular vesicles derived from osteogenically induced human bone marrow mesenchymal stem cells can modulate lineage commitment
-
Martins, M., Ribeiro, D., Martins, A., Reis, R. L. & Neves, N. M. Extracellular Vesicles Derived from Osteogenically Induced Human Bone Marrow Mesenchymal Stem Cells Can Modulate Lineage Commitment. Stem Cell Rep. 6, 284-291, doi:10.1016/j. stemcr.2016.01.001 (2016).
-
(2016)
Stem Cell Rep
, vol.6
, pp. 284-291
-
-
Martins, M.1
Ribeiro, D.2
Martins, A.3
Reis, R.L.4
Neves, N.M.5
-
30
-
-
85001682075
-
Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity
-
Sun, W. et al. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov. 2, 16015, doi:10.1038/celldisc.2016.15 (2016).
-
(2016)
Cell Discov
, vol.2
, pp. 16015
-
-
Sun, W.1
-
31
-
-
84988603175
-
Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway
-
Zhang, J. et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res. Ther. 7, doi:10.1186/s13287-016-0391-3 (2016).
-
(2016)
Stem Cell Res. Ther
, vol.7
-
-
Zhang, J.1
-
32
-
-
77952911072
-
Eukaryotic chemotaxis: A network of signaling pathways controls motility, directional sensing, and polarity
-
Swaney, K. F., Huang, C.-H. & Devreotes, P. N. Eukaryotic Chemotaxis: A Network of Signaling Pathways Controls Motility, Directional Sensing, and Polarity. Annu. Rev. Biophys. 39, 265-289, doi:10.1146/annurev.biophys.093008.131228 (2010).
-
(2010)
Annu. Rev. Biophys
, vol.39
, pp. 265-289
-
-
Swaney, K.F.1
Huang, C.-H.2
Devreotes, P.N.3
-
33
-
-
84878465897
-
A novel application for a 3-dimensional timelapse assay that distinguishes chemotactic from chemokinetic responses of hematopoietic CD133+stem/progenitor cells
-
Pepperell, E. E. & Watt, S. M. A novel application for a 3-dimensional timelapse assay that distinguishes chemotactic from chemokinetic responses of hematopoietic CD133+stem/progenitor cells. Stem Cell Res. 11, 707-720, doi:10.1016/j.scr.2013.04.006 (2013).
-
(2013)
Stem Cell Res
, vol.11
, pp. 707-720
-
-
Pepperell, E.E.1
Watt, S.M.2
-
34
-
-
85019171216
-
Study on chemotaxis and chemokinesis of bone marrow-derived mesenchymal stem cells in hydrogel-based 3D microfluidic devices
-
Yoon, D. et al. Study on chemotaxis and chemokinesis of bone marrow-derived mesenchymal stem cells in hydrogel-based 3D microfluidic devices. Biomater. Res. 20, doi:10.1186/s40824-016-0070-6 (2016).
-
(2016)
Biomater. Res
, vol.20
-
-
Yoon, D.1
-
35
-
-
84929324680
-
Directional cell movement through tissues is controlled by exosome secretion
-
Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A. & Weaver, A. M. Directional cell movement through tissues is controlled by exosome secretion. Nat. Commun. 6, 7164, doi:10.1038/ncomms8164 (2015).
-
(2015)
Nat. Commun
, vol.6
, pp. 7164
-
-
Sung, B.H.1
Ketova, T.2
Hoshino, D.3
Zijlstra, A.4
Weaver, A.M.5
-
36
-
-
84921685348
-
Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury
-
Wang, Z. et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells 33, 456-467, doi:10.1002/stem.1878 (2015).
-
(2015)
Stem Cells
, vol.33
, pp. 456-467
-
-
Wang, Z.1
-
37
-
-
37549017616
-
Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway
-
Raheja, L. F., Genetos, D. C. & Yellowley, C. E. Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway. Biochem. Biophys. Res. Commun. 366, 1061-1066, doi:10.1016/j.bbrc.2007.12.076 (2008).
-
(2008)
Biochem. Biophys. Res. Commun
, vol.366
, pp. 1061-1066
-
-
Raheja, L.F.1
Genetos, D.C.2
Yellowley, C.E.3
-
38
-
-
79956134378
-
Mesenchymal stem cells require integrin 1 for directed migration induced by osteopontin in vitro
-
Zou, C., Song, G., Luo, Q., Yuan, L. & Yang, L. Mesenchymal stem cells require integrin 1 for directed migration induced by osteopontin in vitro. Vitro Cell. Dev. Biol.-Anim. 47, 241-250, doi:10.1007/s11626-010-9377-0 (2010).
-
(2010)
Vitro Cell. Dev. Biol.-Anim
, vol.47
, pp. 241-250
-
-
Zou, C.1
Song, G.2
Luo, Q.3
Yuan, L.4
Yang, L.5
-
39
-
-
0031613168
-
Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration
-
Zohar, R., Cheifetz, S., McCulloch, C. A. & Sodek, J. Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration. Eur. J. Oral Sci. 106(Suppl 1), 401-407, doi:10.1111/eos.1998.106.issue-S1 (1998).
-
(1998)
Eur. J. Oral Sci
, vol.106
, pp. 401-407
-
-
Zohar, R.1
Cheifetz, S.2
McCulloch, C.A.3
Sodek, J.4
-
40
-
-
0035992868
-
Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts
-
Suzuki, K. et al. Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 17, 1486-1497, doi:10.1359/jbmr.2002.17.8.1486 (2002).
-
(2002)
J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res
, vol.17
, pp. 1486-1497
-
-
Suzuki, K.1
-
41
-
-
1642316557
-
Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: Evidence of a role for an intracellular form of osteopontin
-
Zhu, B. et al. Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. J. Cell. Physiol. 198, 155-167, doi:10.1002/jcp.10394 (2004).
-
(2004)
J. Cell. Physiol
, vol.198
, pp. 155-167
-
-
Zhu, B.1
-
42
-
-
34548822436
-
Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells
-
Dwyer, R. M. et al. Monocyte Chemotactic Protein-1 Secreted by Primary Breast Tumors Stimulates Migration of Mesenchymal Stem Cells. Clin. Cancer Res. 13, 5020-5027, doi:10.1158/1078-0432.CCR-07-0731 (2007).
-
(2007)
Clin. Cancer Res
, vol.13
, pp. 5020-5027
-
-
Dwyer, R.M.1
-
43
-
-
34247472169
-
Towards in situ tissue repair: Human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2
-
Ringe, J. et al. Towards in situ tissue repair: Human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J. Cell. Biochem. 101, 135-146, doi:10.1002/jcb.21172 (2007).
-
(2007)
J. Cell. Biochem
, vol.101
, pp. 135-146
-
-
Ringe, J.1
-
44
-
-
44349088779
-
Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2
-
Belema-Bedada, F., Uchida, S., Martire, A., Kostin, S. & Braun, T. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell 2, 566-575, doi:10.1016/j.stem.2008.03.003 (2008).
-
(2008)
Cell Stem Cell
, vol.2
, pp. 566-575
-
-
Belema-Bedada, F.1
Uchida, S.2
Martire, A.3
Kostin, S.4
Braun, T.5
-
45
-
-
34547217039
-
The in vitro migration capacity of human bone marrow mesenchymal stem cells: Comparison of chemokine and growth factor chemotactic activities
-
Ponte, A. L. et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25, 1737-1745, doi:10.1634/stemcells.2007-0054 (2007).
-
(2007)
Stem Cells
, vol.25
, pp. 1737-1745
-
-
Ponte, A.L.1
-
46
-
-
84864582297
-
Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(-glutamic acid) polyelectrolyte complexes
-
Gonçalves, R. M., Antunes, J. C. & Barbosa, M. A. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(-glutamic acid) polyelectrolyte complexes. Eur. Cell. Mater. 23, 249-260, doi:10.22203/eCM (2012).
-
(2012)
Eur. Cell. Mater
, vol.23
, pp. 249-260
-
-
Gonçalves, R.M.1
Antunes, J.C.2
Barbosa, M.A.3
-
47
-
-
84878446393
-
Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade
-
Vandooren, J., Van den Steen, P. E. & Opdenakker, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit. Rev. Biochem. Mol. Biol. 48, 222-272, doi:10.3109/10409238.2013.770819 (2013).
-
(2013)
Crit. Rev. Biochem. Mol. Biol
, vol.48
, pp. 222-272
-
-
Vandooren, J.1
Van Den Steen, P.E.2
Opdenakker, G.3
-
48
-
-
34247368028
-
MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: Differential regulation by inflammatory cytokines
-
Ries, C. et al. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109, 4055-4063, doi:10.1182/blood-2006-10-051060 (2007).
-
(2007)
Blood
, vol.109
, pp. 4055-4063
-
-
Ries, C.1
-
49
-
-
84881091464
-
Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties
-
Dalli, J. et al. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. Mol. Cell. Proteomics 12, 2205-2219, doi:10.1074/mcp.M113.028589 (2013).
-
(2013)
Mol. Cell. Proteomics
, vol.12
, pp. 2205-2219
-
-
Dalli, J.1
-
50
-
-
84863060761
-
Proteomic analysis of microvesicles derived from human mesenchymal stem cells
-
Kim, H.-S. et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J. Proteome Res. 11, 839-849, doi:10.1021/pr200682z (2012).
-
(2012)
J. Proteome Res
, vol.11
, pp. 839-849
-
-
Kim, H.-S.1
-
51
-
-
34547885530
-
An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma
-
Takafuji, V., Forgues, M., Unsworth, E., Goldsmith, P. & Wang, X. W. An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma. Oncogene 26, 6361-6371, doi:10.1038/sj.onc.1210463 (2007).
-
(2007)
Oncogene
, vol.26
, pp. 6361-6371
-
-
Takafuji, V.1
Forgues, M.2
Unsworth, E.3
Goldsmith, P.4
Wang, X.W.5
-
52
-
-
33747713246
-
Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement
-
Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317, doi:10.1080/14653240600855905 (2006).
-
(2006)
Cytotherapy
, vol.8
, pp. 315-317
-
-
Dominici, M.1
-
53
-
-
84868253478
-
Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation
-
Oliveira, M. I., Santos, S. G., Oliveira, M. J., Torres, A. L. & Barbosa, M. A. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. Eur. Cell. Mater. 24, 136-153, doi:10.22203/eCM.v024a10 (2012).
-
(2012)
Eur. Cell. Mater
, vol.24
, pp. 136-153
-
-
Oliveira, M.I.1
Santos, S.G.2
Oliveira, M.J.3
Torres, A.L.4
Barbosa, M.A.5
-
54
-
-
84862520770
-
Fiji: An open-source platform for biological-image analysis
-
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682, doi:10.1038/nmeth.2019 (2012).
-
(2012)
Nat. Methods
, vol.9
, pp. 676-682
-
-
Schindelin, J.1
|