메뉴 건너뛰기




Volumn , Issue , 2017, Pages 227-231

Onsager-corrected deep learning for sparse linear inverse problems

Author keywords

Approximate message passing; Compressive sensing; Deep learning; Sparse coding

Indexed keywords

COMPRESSED SENSING; DEEP LEARNING; MESSAGE PASSING; NETWORK ARCHITECTURE; NEURAL NETWORKS; SIGNAL RECONSTRUCTION;

EID: 85019234925     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/GlobalSIP.2016.7905837     Document Type: Conference Paper
Times cited : (94)

References (25)
  • 2
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1
    • B. A. Olshausen and D. J. Field, "Sparse coding with an overcomplete basis set: A strategy employed by v1," Vision Research, vol. 37, pp. 3311-3325, 1997.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 3
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," in Proc. Int. Conf. Mach. Learning, pp. 399-406, 2010.
    • (2010) Proc. Int. Conf. Mach. Learning , pp. 399-406
    • Gregor, K.1    LeCun, Y.2
  • 5
    • 84964680324 scopus 로고    scopus 로고
    • Learning optimal nonlinearities for iterative thresholding algorithms
    • May
    • U. Kamilov and H. Mansour, "Learning optimal nonlinearities for iterative thresholding algorithms," IEEE Signal Process. Lett., vol. 23, pp. 747-751, May 2016.
    • (2016) IEEE Signal Process. Lett. , vol.23 , pp. 747-751
    • Kamilov, U.1    Mansour, H.2
  • 7
    • 73149095169 scopus 로고    scopus 로고
    • Message passing algorithms for compressed sensing
    • Nov.
    • D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing," Proc. Nat. Acad. Sci., vol. 106, pp. 18914-18919, Nov. 2009.
    • (2009) Proc. Nat. Acad. Sci. , vol.106 , pp. 18914-18919
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 8
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. TibshIrani, "Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Statist. Soc. B , vol.58 , Issue.1 , pp. 267-288
    • TibshIrani, R.1
  • 10
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • E. Candès, J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207-1223, 2006.
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.8 , pp. 1207-1223
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 11
    • 0032022704 scopus 로고    scopus 로고
    • Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage
    • Mar.
    • A. Chambolle, R. A. DeVore, N. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process., vol. 7, pp. 319-335, Mar. 1998.
    • (1998) IEEE Trans. Image Process , vol.7 , pp. 319-335
    • Chambolle, A.1    DeVore, R.A.2    Lee, N.3    Lucier, B.J.4
  • 12
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Nov
    • I. Daubechies, M. Defrise, and C. D. Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,," Commun. Pure & Appl. Math., vol. 57, pp. 1413-1457, Nov. 2004.
    • (2004) Commun. Pure & Appl. Math , vol.57 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    Mol, C.D.3
  • 13
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkagethresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, "A fast iterative shrinkagethresholding algorithm for linear inverse problems," SIAM J. Imag. Sci., vol. 2, no. 1, pp. 183-202, 2009.
    • (2009) SIAM J. Imag. Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 14
    • 80054086193 scopus 로고    scopus 로고
    • Graphical models concepts in compressed sensing
    • (Y. C. Eldar and G. Kutyniok, eds.), Cambridge Univ. Press
    • A. Montanari, "Graphical models concepts in compressed sensing," in Compressed Sensing: Theory and Applications (Y. C. Eldar and G. Kutyniok, eds.), Cambridge Univ. Press, 2012.
    • (2012) Compressed Sensing: Theory and Applications
    • Montanari, A.1
  • 15
    • 79251496987 scopus 로고    scopus 로고
    • The dynamics of message passing on dense graphs, with applications to compressed sensing
    • Feb.
    • M. Bayati and A. Montanari, "The dynamics of message passing on dense graphs, with applications to compressed sensing," IEEE Trans. Inform. Theory, vol. 57, pp. 764-785, Feb. 2011.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , pp. 764-785
    • Bayati, M.1    Montanari, A.2
  • 16
    • 77954825041 scopus 로고    scopus 로고
    • Message passing algorithms for compressed sensing: I. Motivation and construction
    • (Cairo, Egypt),Jan
    • D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing: I. Motivation and construction," in Proc. Inform. Theory Workshop, (Cairo, Egypt), pp. 1-5, Jan. 2010.
    • (2010) Proc. Inform. Theory Workshop , pp. 1-5
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 20
    • 84962128851 scopus 로고    scopus 로고
    • Image superresolution using deep convolutional networks
    • Feb.
    • C. Dong, C. C. Loy, K. He, and X. Tang, "Image superresolution using deep convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, pp. 295-307, Feb. 2016.
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell , vol.38 , pp. 295-307
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 22
    • 84986249771 scopus 로고    scopus 로고
    • ReconNet: Non-iterative reconstruction of images from compressively sensed random measurements
    • (see also arXiv:1601.06892)
    • K. Kulkarni, S. Lohi, P. Turaga, R. Kerviche, and A. Ashok, "ReconNet: Non-iterative reconstruction of images from compressively sensed random measurements," in Proc. IEEE Conf. Comp. Vision Pattern Recog., 2016. (see also arXiv:1601.06892).
    • (2016) Proc. IEEE Conf. Comp. Vision Pattern Recog
    • Kulkarni, K.1    Lohi, S.2    Turaga, P.3    Kerviche, R.4    Ashok, A.5
  • 25
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • (see also arXiv:1412.6980)
    • D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in Proc. Internat. Conf. on Learning Repres., 2015. (see also arXiv:1412.6980).
    • (2015) Proc. Internat. Conf. on Learning Repres
    • Kingma, D.P.1    Ba, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.