메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 615-622

Learning efficient structured sparse models

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMANTS; FEED FORWARD; LARGE-SCALE APPLICATIONS; OBJECTIVE FUNCTIONS; OPTIMIZATION ALGORITHMS; ORDERS OF MAGNITUDE; PERFORMANCE DEGRADATION; REAL TIME; SPARSE CODES; SPARSE CODING; STANDARD OPTIMIZATION METHOD;

EID: 84867138199     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (27)

References (23)
  • 2
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • March
    • Beck, A. and Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Img. Sci., 2:183-202, March 2009.
    • (2009) SIAM J. Img. Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 4
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Apr.
    • Donoho, D. Compressed sensing. IEEE Trans. on Inf. Theory, 52(4):1289-1306, Apr. 2006.
    • (2006) IEEE Trans. on Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.1
  • 5
    • 73849109362 scopus 로고    scopus 로고
    • Average case analysis of multichannel sparse recovery using convex relaxation
    • Eldar, Y. C. and Rauhut, H. Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans. on Inf. Theory, 56(1):505-519, 2010.
    • (2010) IEEE Trans. on Inf. Theory , vol.56 , Issue.1 , pp. 505-519
    • Eldar, Y.C.1    Rauhut, H.2
  • 7
    • 84860644702 scopus 로고    scopus 로고
    • Measuring invariances in deep networks
    • Goodfellow, I., Le, Q., Saxe, A., Lee, H., and Ng, A. Y. Measuring invariances in deep networks. In In NIPS, pp. 646-654. 2009.
    • (2009) NIPS , pp. 646-654
    • Goodfellow, I.1    Le, Q.2    Saxe, A.3    Lee, H.4    Ng, A.Y.5
  • 8
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • Gregor, K. and LeCun, Y. Learning fast approximations of sparse coding. In ICML, pp. 399-406, 2010.
    • (2010) ICML , pp. 399-406
    • Gregor, K.1    LeCun, Y.2
  • 9
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • Jarrett, K., Kavukcuoglu, K., Ranzato, M.A., and LeCun, Y. What is the best multi-stage architecture for object recognition? In CVPR, pp. 2146-2153, 2009.
    • (2009) CVPR , pp. 2146-2153
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.A.3    LeCun, Y.4
  • 10
    • 80052234083 scopus 로고    scopus 로고
    • Proximal methods for hierarchical sparse coding
    • Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. Proximal methods for hierarchical sparse coding. JMLR, 12: 2297-2334, 2011.
    • (2011) JMLR , vol.12 , pp. 2297-2334
    • Jenatton, R.1    Mairal, J.2    Obozinski, G.3    Bach, F.4
  • 12
    • 77956506829 scopus 로고    scopus 로고
    • 1 minimization with application to compressed sensing; a greedy algorithm
    • 1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems and Imaging, 3: 487-503, 2009.
    • (2009) Inverse Problems and Imaging , vol.3 , pp. 487-503
    • Li, Y.1    Osher, S.2
  • 13
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • Mairal, J., Bach, F., Ponce, J., and Sapiro, G. Online dictionary learning for sparse coding. In ICML, pp. 689-696, 2009.
    • (2009) ICML , pp. 689-696
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 14
    • 57649169327 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Catholic University of Louvain, Louvain-la-Neuve, Belgium
    • Nesterov, Y. Gradient methods for minimizing composite objective function. In CORE. Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2007.
    • (2007) CORE
    • Nesterov, Y.1
  • 15
    • 0032663328 scopus 로고    scopus 로고
    • Filtering for texture classification: A comparative study
    • Randen, T. and Husoy, J. H. Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell., 21(4):291-310, 1999.
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , Issue.4 , pp. 291-310
    • Randen, T.1    Husoy, J.H.2
  • 16
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • Ranzato, M., Huang, F. J., Boureau, Y-L., and LeCun, Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007.
    • (2007) CVPR
    • Ranzato, M.1    Huang, F.J.2    Boureau, Y.-L.3    LeCun, Y.4
  • 17
    • 80051715215 scopus 로고    scopus 로고
    • C-hilasso: A collaborative hierarchical sparse modeling framework
    • Sprechmann, P., Ramírez, I., Sapiro, G., and Eldar, Y. C. C-hilasso: A collaborative hierarchical sparse modeling framework. IEEE Trans. Signal Process., 59(9):4183-4198, 2011.
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.9 , pp. 4183-4198
    • Sprechmann, P.1    Ramírez, I.2    Sapiro, G.3    Eldar, Y.C.4
  • 18
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani, R. Regression shrinkage and selection via the LASSO. J. Royal Stat. Society: Series B, 58(1):267-288, 1996.
    • (1996) J. Royal Stat. Society: Series B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 19
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondifferentiable minimization
    • June
    • Tseng, P. Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl., 109(3):475-494, June 2001.
    • (2001) J. Optim. Theory Appl. , vol.109 , Issue.3 , pp. 475-494
    • Tseng, P.1
  • 20
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger, K.Q. and Saul, L.K. Distance metric learning for large margin nearest neighbor classification. JMLR, 10:207-244, 2009.
    • (2009) JMLR , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 21
    • 85162409960 scopus 로고    scopus 로고
    • Learning sparse representations of high dimensional data on large scale dictionaries
    • Xiang, Z. J., Xu, H., and Ramadge, P. J. Learning sparse representations of high dimensional data on large scale dictionaries. In NIPS, 24:900-908, 2011.
    • (2011) NIPS , vol.24 , pp. 900-908
    • Xiang, Z.J.1    Xu, H.2    Ramadge, P.J.3
  • 22
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. Model selection and estimation in regression with grouped variables. J. Royal Stat. Society, Series B, 68:49-67, 2006.
    • (2006) J. Royal Stat. Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 23
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • Zhao, P., Rocha, G., and Yu, B. The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics, 37(6A):3468, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.6 A , pp. 3468
    • Zhao, P.1    Rocha, G.2    Yu, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.