메뉴 건너뛰기




Volumn 47, Issue 10, 2017, Pages 2740-2753

GPU-accelerated parallel hierarchical extreme learning machine on flink for big data

Author keywords

Big data; deep learning (DL); flink; GPGPU; hierarchical extreme learning machine (H ELM); parallel

Indexed keywords

APPROXIMATION ALGORITHMS; ARTIFICIAL INTELLIGENCE; CACHE MEMORY; CLUSTER COMPUTING; CLUSTERING ALGORITHMS; COMPUTER ARCHITECTURE; COMPUTER GRAPHICS; DATA HANDLING; GRAPHICS PROCESSING UNIT; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MAPPING; NETWORK LAYERS; OPTIMIZATION; PROGRAM PROCESSORS;

EID: 85018957128     PISSN: 21682216     EISSN: 21682232     Source Type: Journal    
DOI: 10.1109/TSMC.2017.2690673     Document Type: Article
Times cited : (101)

References (37)
  • 1
    • 84969963360 scopus 로고    scopus 로고
    • Stochastic decision making for adaptive crowdsourcing in medical big-data platforms
    • Nov
    • J. Kim and W. Lee, "Stochastic decision making for adaptive crowdsourcing in medical big-data platforms," IEEE Trans. Syst., Man, Cybern., Syst., vol. 45, no. 11, pp. 1471-1476, Nov. 2015
    • (2015) IEEE Trans. Syst., Man, Cybern., Syst , vol.45 , Issue.11 , pp. 1471-1476
    • Kim, J.1    Lee, W.2
  • 2
    • 84969780631 scopus 로고    scopus 로고
    • Trust evaluation via large-scale complex serviceoriented online social networks
    • Nov
    • L. Liu and H. Jia, "Trust evaluation via large-scale complex serviceoriented online social networks," IEEE Trans. Syst., Man, Cybern., Syst., vol. 45, no. 11, pp. 1402-1412, Nov. 2015
    • (2015) IEEE Trans. Syst., Man, Cybern., Syst , vol.45 , Issue.11 , pp. 1402-1412
    • Liu, L.1    Jia, H.2
  • 3
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Apr
    • G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012
    • (2012) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.-B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 4
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: A new learning scheme of feedforward neural networks
    • Budapest, Hungary
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 2. Budapest, Hungary, 2004, pp. 985-990
    • (2004) Proc. IEEE Int. Joint Conf. Neural Netw , vol.2 , pp. 985-990
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 5
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, 2006
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 6
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Jul
    • G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 7
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • G.-B. Huang, M.-B. Li, L. Chen, and C.-K. Siew, "Incremental extreme learning machine with fully complex hidden nodes," Neurocomputing, vol. 71, nos. 4-6, pp. 576-583, 2008
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 576-583
    • Huang, G.-B.1    Li, M.-B.2    Chen, L.3    Siew, C.-K.4
  • 8
    • 84929000701 scopus 로고    scopus 로고
    • Extreme learning machine for multilayer perceptron
    • Apr
    • J. Tang, C. Deng, and G.-B. Huang, "Extreme learning machine for multilayer perceptron," IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 4, pp. 809-821, Apr. 2016
    • (2016) IEEE Trans. Neural Netw. Learn. Syst , vol.27 , Issue.4 , pp. 809-821
    • Tang, J.1    Deng, C.2    Huang, G.-B.3
  • 9
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large clusters," Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 10
    • 84962799392 scopus 로고    scopus 로고
    • FiDoop: Parallel mining of frequent itemsets using mapreduce
    • Mar
    • Y. Xun, J. Zhang, and X. Qin, "FiDoop: Parallel mining of frequent itemsets using mapreduce," IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 3, pp. 313-325, Mar. 2016
    • (2016) IEEE Trans. Syst., Man, Cybern., Syst , vol.46 , Issue.3 , pp. 313-325
    • Xun, Y.1    Zhang, J.2    Qin, X.3
  • 11
    • 84962792170 scopus 로고    scopus 로고
    • Attribute equilibrium dominance reduction accelerator (DCCAEDR) based on distributed coevolutionary cloud and its application in medical records
    • Mar
    • W.-P. Ding, C.-T. Lin, M. Prasad, S.-B. Chen, and Z.-J. Guan, "Attribute equilibrium dominance reduction accelerator (DCCAEDR) based on distributed coevolutionary cloud and its application in medical records," IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 3, pp. 384-400, Mar. 2016
    • (2016) IEEE Trans. Syst., Man, Cybern., Syst , vol.46 , Issue.3 , pp. 384-400
    • Ding, W.-P.1    Lin, C.-T.2    Prasad, M.3    Chen, S.-B.4    Guan, Z.-J.5
  • 12
    • 85030106226 scopus 로고    scopus 로고
    • Accessed on Jul. 1, 2016
    • Flink Programming Guide. Accessed on Jul. 1, 2016. [Online]. Available: http://flink.apache.org/ (2016)
    • (2016) Flink Programming Guide
  • 13
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
    • San Jose, CA, USA
    • M. Zaharia et al., "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing," in Proc. 9th USENIX Conf. Netw. Syst. Design Implement., San Jose, CA, USA, 2012, p. 2
    • (2012) Proc. 9th USENIX Conf. Netw. Syst. Design Implement , pp. 2
    • Zaharia, M.1
  • 14
    • 85030111246 scopus 로고    scopus 로고
    • Accessed on Jul. 1, 2016
    • Cudnn. Accessed on Jul. 1, 2016. [Online]. Available: https://developer.nvidia.com/cudnn (2016)
    • (2016)
  • 15
    • 84894294885 scopus 로고    scopus 로고
    • Deep learning with COTS HPC systems
    • Atlanta, GA, USA
    • A. Coates et al., "Deep learning with COTS HPC systems," in Proc. Int. Conf. Mach. Learn., Atlanta, GA, USA, 2013, pp. 1337-1345
    • (2013) Proc. Int. Conf. Mach. Learn , pp. 1337-1345
    • Coates, A.1
  • 16
    • 84990878540 scopus 로고    scopus 로고
    • Gflink: An in-memory computing architecture on heterogeneous CPU-GPU clusters for big data
    • Philadelphia, PA, USA
    • C. Chen, K. Li, A. Ouyang, Z. Tang, and K. Li, "Gflink: An in-memory computing architecture on heterogeneous CPU-GPU clusters for big data," in Proc. Int. Conf. Parallel Process., Philadelphia, PA, USA, 2016, pp. 542-551
    • (2016) Proc. Int. Conf. Parallel Process , pp. 542-551
    • Chen, C.1    Li, K.2    Ouyang, A.3    Tang, Z.4    Li, K.5
  • 17
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • Nov
    • N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411-1423, Nov. 2006
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.-Y.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 18
    • 85008039450 scopus 로고    scopus 로고
    • Online sequential fuzzy extreme learning machine for function approximation and classification problems
    • Aug
    • H.-J. Rong, G.-B. Huang, N. Sundararajan, and P. Saratchandran, "Online sequential fuzzy extreme learning machine for function approximation and classification problems," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 4, pp. 1067-1072, Aug. 2009
    • (2009) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.39 , Issue.4 , pp. 1067-1072
    • Rong, H.-J.1    Huang, G.-B.2    Sundararajan, N.3    Saratchandran, P.4
  • 19
    • 84911944987 scopus 로고    scopus 로고
    • Semi-supervised and unsupervised extreme learning machines
    • Dec
    • G. Huang, S. Song, J. N. D. Gupta, and C. Wu, "Semi-supervised and unsupervised extreme learning machines," IEEE Trans. Cybern., vol. 44, no. 12, pp. 2405-2417, Dec. 2014
    • (2014) IEEE Trans. Cybern , vol.44 , Issue.12 , pp. 2405-2417
    • Huang, G.1    Song, S.2    Gupta, J.N.D.3    Wu, C.4
  • 20
    • 84870243622 scopus 로고    scopus 로고
    • Parallel extreme learning machine for regression based on MapReduce
    • Feb
    • Q. He, T. Shang, F. Zhuang, and Z. Shi, "Parallel extreme learning machine for regression based on MapReduce," Neurocomputing, vol. 102, pp. 52-58, Feb. 2013
    • (2013) Neurocomputing , vol.102 , pp. 52-58
    • He, Q.1    Shang, T.2    Zhuang, F.3    Shi, Z.4
  • 21
    • 84922020238 scopus 로고    scopus 로고
    • Parallel online sequential extreme learning machine based on MapReduce
    • Feb
    • B.Wang, S. Huang, J. Qiu, Y. Liu, and G. Wang, "Parallel online sequential extreme learning machine based on MapReduce," Neurocomputing, vol. 149, pp. 224-232, Feb. 2015
    • (2015) Neurocomputing , vol.149 , pp. 224-232
    • Wang, B.1    Huang, S.2    Qiu, J.3    Liu, Y.4    Wang, G.5
  • 22
    • 84927804633 scopus 로고    scopus 로고
    • Elm: Distributed extreme learning machine with MapReduce
    • J. Xin et al., "Elm: Distributed extreme learning machine with MapReduce," World Wide Web, vol. 17, no. 5, pp. 1189-1204, 2014
    • (2014) World Wide Web , vol.17 , Issue.5 , pp. 1189-1204
    • Xin, J.1
  • 23
    • 0031123769 scopus 로고    scopus 로고
    • SUMMA: Scalable universal matrix multiplication algorithm
    • R. A. V. D. Geijn and J. Watts, "SUMMA: Scalable universal matrix multiplication algorithm," Concurrency Comput. Pract. Exp., vol. 9, no. 4, p. 255-274, 1997
    • (1997) Concurrency Comput. Pract. Exp , vol.9 , Issue.4 , pp. 255-274
    • Geijn, R.A.V.D.1    Watts, J.2
  • 25
    • 0002924772 scopus 로고
    • ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers
    • McLean, VA, USA
    • J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, "ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers," in Proc. 4th Symp. Front. Massively Parallel Comput., McLean, VA, USA, 1992, pp. 120-127
    • (1992) Proc. 4th Symp. Front. Massively Parallel Comput , pp. 120-127
    • Choi, J.1    Dongarra, J.J.2    Pozo, R.3    Walker, D.W.4
  • 26
    • 79952420862 scopus 로고    scopus 로고
    • HAMA: An efficient matrix computation with the mapreduce framework
    • Indianapolis, IN, USA, Nov./Dec
    • S. Seo et al., "HAMA: An efficient matrix computation with the mapreduce framework," in Proc. 2nd Int. Conf. Cloud Comput. CloudCom, Indianapolis, IN, USA, Nov./Dec. 2010, pp. 721-726
    • (2010) Proc. 2nd Int. Conf. Cloud Comput. CloudCom , pp. 721-726
    • Seo, S.1
  • 27
    • 85030099088 scopus 로고    scopus 로고
    • Accessed on Nov. 1, 2016
    • Cublas Programming Guide. Accessed on Nov. 1, 2016. [Online]. Available: http://docs.nvidia.com/cuda/cublas/index.html (2016)
    • (2016) Cublas Programming Guide
  • 28
    • 85030123043 scopus 로고    scopus 로고
    • Accessed on Nov. 1, 2016
    • Cusparse Programming Guide. Accessed on Nov. 1, 2016. [Online]. Available: http://docs.nvidia.com/cuda/cusparse/index.html (2016)
    • (2016) Cusparse Programming Guide
  • 29
    • 84919470072 scopus 로고    scopus 로고
    • Performance analysis and optimization for SpMV on GPU using probabilistic modeling
    • Jan
    • K. Li, W. Yang, and K. Li, "Performance analysis and optimization for SpMV on GPU using probabilistic modeling," IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 1, pp. 196-205, Jan. 2015
    • (2015) IEEE Trans. Parallel Distrib. Syst , vol.26 , Issue.1 , pp. 196-205
    • Li, K.1    Yang, W.2    Li, K.3
  • 30
    • 84939230567 scopus 로고    scopus 로고
    • Performance optimization using partitioned SpMV on GPUs and multicore CPUs
    • Sep
    • W. Yang, K. Li, Z. Mo, and K. Li, "Performance optimization using partitioned SpMV on GPUs and multicore CPUs," IEEE Trans. Comput., vol. 64, no. 9, pp. 2623-2636, Sep. 2015
    • (2015) IEEE Trans. Comput , vol.64 , Issue.9 , pp. 2623-2636
    • Yang, W.1    Li, K.2    Mo, Z.3    Li, K.4
  • 31
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Sep
    • T. Poggio and F. Girosi, "Networks for approximation and learning," Proc. IEEE, vol. 78, no. 9, pp. 1481-1497, Sep. 1990
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 33
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • G.-B. Huang and L. Chen, "Convex incremental extreme learning machine," Neurocomputing, vol. 70, nos. 16-18, pp. 3056-3062, 2007
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 34
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: A review
    • Jan
    • G. Huang, G.-B. Huang, S. Song, and K. You, "Trends in extreme learning machines: A review," Neural Netw., vol. 61, pp. 32-48, Jan. 2015
    • (2015) Neural Netw , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.-B.2    Song, S.3    You, K.4
  • 35
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 36
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM J. Imag. Sci., vol. 2, no. 1, pp. 183-202, 2009
    • (2009) SIAM J. Imag. Sci , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 37
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.