메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2423-2431

Satisfying real-world goals with dataset constraints

Author keywords

[No Author keywords available]

Indexed keywords

OPTIMIZATION;

EID: 85018896328     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (253)

References (27)
  • 1
    • 0141693771 scopus 로고    scopus 로고
    • An elementary introduction to modern convex geometry
    • K. Ball. An elementary introduction to modern convex geometry. Flavors of Geometry, 31: 1-58, 1997.
    • (1997) Flavors of Geometry , vol.31 , pp. 1-58
    • Ball, K.1
  • 2
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. JMLR, 3:463-482, 2002.
    • (2002) JMLR , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 3
    • 80052827449 scopus 로고    scopus 로고
    • Adverse impact and test validation: A practitioner's guide to valid and defensible employment testing
    • D. Biddle. Adverse Impact and Test Validation: A Practitioner's Guide to Valid and Defensible Employment Testing. Gower, 2005.
    • (2005) Gower
    • Biddle, D.1
  • 4
    • 0019635237 scopus 로고
    • Feature article - The ellipsoid method: A survey
    • November
    • R. G. Bland, D. Goldfarb, and M. J. Todd. Feature article-the ellipsoid method: A survey. Operations Research, 29(6):1039-1091, November 1981.
    • (1981) Operations Research , vol.29 , Issue.6 , pp. 1039-1091
    • Bland, R.G.1    Goldfarb, D.2    Todd, M.J.3
  • 6
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Software
    • C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2011) ACM Transactions on Intelligent Systems and Technology , vol.2 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 8
    • 84897480859 scopus 로고    scopus 로고
    • Learning optimally sparse support vector machines
    • A. Cotter, S. Shalev-Shwartz, and N. Srebro. Learning optimally sparse support vector machines. In ICML, pages 266-274, 2013.
    • (2013) ICML , pp. 266-274
    • Cotter, A.1    Shalev-Shwartz, S.2    Srebro, N.3
  • 11
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9:1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 12
    • 85018868078 scopus 로고    scopus 로고
    • Launch and iterate: Reducing prediction churn
    • M. M. Fard, Q. Cormier, K. Canini, and M. Gupta. Launch and iterate: Reducing prediction churn. In NIPS, 2016.
    • (2016) NIPS
    • Fard, M.M.1    Cormier, Q.2    Canini, K.3    Gupta, M.4
  • 14
    • 84972540637 scopus 로고
    • Partitions of mass-distributions and convex bodies by hyperplanes
    • December
    • B. Grünbaum. Partitions of mass-distributions and convex bodies by hyperplanes. Pacific Journal of Mathematics, 10(4):1257-1261, December 1960.
    • (1960) Pacific Journal of Mathematics , vol.10 , Issue.4 , pp. 1257-1261
    • Grünbaum, B.1
  • 15
    • 85018874612 scopus 로고    scopus 로고
    • Equality of opportunity in supervised learning
    • M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In NIPS, 2016.
    • (2016) NIPS
    • Hardt, M.1    Price, E.2    Srebro, N.3
  • 16
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • T. Joachims. A support vector method for multivariate performance measures. In ICML, 2005.
    • (2005) ICML
    • Joachims, T.1
  • 17
    • 56449123826 scopus 로고    scopus 로고
    • Simple, robust, scalable semi-supervised learning with expectation regularization
    • G. S. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning with expectation regularization. In ICML, 2007.
    • (2007) ICML
    • Mann, G.S.1    McCallum, A.2
  • 19
    • 84969523778 scopus 로고    scopus 로고
    • Optimizing non-decomposable performance measures: A tale of two classes
    • H. Narasimhan, P. Kar, and P. Jain. Optimizing non-decomposable performance measures: a tale of two classes. In ICML, 2015.
    • (2015) ICML
    • Narasimhan, H.1    Kar, P.2    Jain, P.3
  • 21
    • 35348888345 scopus 로고    scopus 로고
    • Approximating the centroid is hard
    • L. Rademacher. Approximating the centroid is hard. In SoCG, pages 302-305, 2007.
    • (2007) SoCG , pp. 302-305
    • Rademacher, L.1
  • 22
    • 0002062038 scopus 로고    scopus 로고
    • Optimization of conditional value-at-risk
    • R. T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of Risk, 2: 21-42, 2000.
    • (2000) Journal of Risk , vol.2 , pp. 21-42
    • Rockafellar, R.T.1    Uryasev, S.2
  • 24
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss
    • Feb.
    • S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss. JMLR, 14(1):567-599, Feb. 2013.
    • (2013) JMLR , vol.14 , Issue.1 , pp. 567-599
    • Shalev-Shwartz, S.1    Zhang, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.