-
1
-
-
0141693771
-
An elementary introduction to modern convex geometry
-
K. Ball. An elementary introduction to modern convex geometry. Flavors of Geometry, 31: 1-58, 1997.
-
(1997)
Flavors of Geometry
, vol.31
, pp. 1-58
-
-
Ball, K.1
-
2
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. JMLR, 3:463-482, 2002.
-
(2002)
JMLR
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
3
-
-
80052827449
-
Adverse impact and test validation: A practitioner's guide to valid and defensible employment testing
-
D. Biddle. Adverse Impact and Test Validation: A Practitioner's Guide to Valid and Defensible Employment Testing. Gower, 2005.
-
(2005)
Gower
-
-
Biddle, D.1
-
4
-
-
0019635237
-
Feature article - The ellipsoid method: A survey
-
November
-
R. G. Bland, D. Goldfarb, and M. J. Todd. Feature article-the ellipsoid method: A survey. Operations Research, 29(6):1039-1091, November 1981.
-
(1981)
Operations Research
, vol.29
, Issue.6
, pp. 1039-1091
-
-
Bland, R.G.1
Goldfarb, D.2
Todd, M.J.3
-
6
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
Software
-
C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
-
(2011)
ACM Transactions on Intelligent Systems and Technology
, vol.2
, pp. 271-2727
-
-
Chang, C.-C.1
Lin, C.-J.2
-
8
-
-
84897480859
-
Learning optimally sparse support vector machines
-
A. Cotter, S. Shalev-Shwartz, and N. Srebro. Learning optimally sparse support vector machines. In ICML, pages 266-274, 2013.
-
(2013)
ICML
, pp. 266-274
-
-
Cotter, A.1
Shalev-Shwartz, S.2
Srebro, N.3
-
10
-
-
85018873382
-
-
E. E. Eban, M. Schain, A. Gordon, R. A. Saurous, and G. Elidan. Large-scale learning with global non-decomposable objectives, 2016. URL https://arxiv.org/abs/1608.04802.
-
(2016)
Large-scale Learning with Global Non-decomposable Objectives
-
-
Eban, E.E.1
Schain, M.2
Gordon, A.3
Saurous, R.A.4
Elidan, G.5
-
11
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9:1871-1874, 2008.
-
(2008)
JMLR
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
14
-
-
84972540637
-
Partitions of mass-distributions and convex bodies by hyperplanes
-
December
-
B. Grünbaum. Partitions of mass-distributions and convex bodies by hyperplanes. Pacific Journal of Mathematics, 10(4):1257-1261, December 1960.
-
(1960)
Pacific Journal of Mathematics
, vol.10
, Issue.4
, pp. 1257-1261
-
-
Grünbaum, B.1
-
15
-
-
85018874612
-
Equality of opportunity in supervised learning
-
M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In NIPS, 2016.
-
(2016)
NIPS
-
-
Hardt, M.1
Price, E.2
Srebro, N.3
-
16
-
-
31844446804
-
A support vector method for multivariate performance measures
-
T. Joachims. A support vector method for multivariate performance measures. In ICML, 2005.
-
(2005)
ICML
-
-
Joachims, T.1
-
17
-
-
56449123826
-
Simple, robust, scalable semi-supervised learning with expectation regularization
-
G. S. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning with expectation regularization. In ICML, 2007.
-
(2007)
ICML
-
-
Mann, G.S.1
McCallum, A.2
-
19
-
-
84969523778
-
Optimizing non-decomposable performance measures: A tale of two classes
-
H. Narasimhan, P. Kar, and P. Jain. Optimizing non-decomposable performance measures: a tale of two classes. In ICML, 2015.
-
(2015)
ICML
-
-
Narasimhan, H.1
Kar, P.2
Jain, P.3
-
21
-
-
35348888345
-
Approximating the centroid is hard
-
L. Rademacher. Approximating the centroid is hard. In SoCG, pages 302-305, 2007.
-
(2007)
SoCG
, pp. 302-305
-
-
Rademacher, L.1
-
22
-
-
0002062038
-
Optimization of conditional value-at-risk
-
R. T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of Risk, 2: 21-42, 2000.
-
(2000)
Journal of Risk
, vol.2
, pp. 21-42
-
-
Rockafellar, R.T.1
Uryasev, S.2
-
24
-
-
84875134236
-
Stochastic dual coordinate ascent methods for regularized loss
-
Feb.
-
S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss. JMLR, 14(1):567-599, Feb. 2013.
-
(2013)
JMLR
, vol.14
, Issue.1
, pp. 567-599
-
-
Shalev-Shwartz, S.1
Zhang, T.2
-
25
-
-
79952748054
-
Pegasos: Primal estimated sub-gradient SOlver for SVM
-
March
-
S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. Mathematical Programming, 127(1):3-30, March 2011.
-
(2011)
Mathematical Programming
, vol.127
, Issue.1
, pp. 3-30
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
Cotter, A.4
-
27
-
-
85043712283
-
Fairness constraints: A mechanism for fair classification
-
M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi. Fairness constraints: A mechanism for fair classification. In ICML Workshop on Fairness, Accountability, and Transparency in Machine Learning, 2015.
-
(2015)
ICML Workshop on Fairness, Accountability, and Transparency in Machine Learning
-
-
Zafar, M.B.1
Valera, I.2
Rodriguez, M.G.3
Gummadi, K.P.4
|