-
1
-
-
0018520640
-
Distribution-free performance bounds for potential function rules
-
L. Devroye and T. Wagner. Distribution-free performance bounds for potential function rules. Information Theory, IEEE Transactions on, 25(5): 601-604, 1979.
-
(1979)
Information Theory, IEEE Transactions on
, vol.25
, Issue.5
, pp. 601-604
-
-
Devroye, L.1
Wagner, T.2
-
6
-
-
33745655665
-
Learning theory: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
-
S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization. Advances in Computational Mathematics, 25(1-3): 161-193, 2006.
-
(2006)
Advances in Computational Mathematics
, vol.25
, Issue.1-3
, pp. 161-193
-
-
Mukherjee, S.1
Niyogi, P.2
Poggio, T.3
Rifkin, R.4
-
8
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1): 1929-1958, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
9
-
-
84957926960
-
A survey of randomized algorithms for training neural networks
-
L. Zhang and P. N. Suganthan. A survey of randomized algorithms for training neural networks. Information Sciences, 2016.
-
(2016)
Information Sciences
-
-
Zhang, L.1
Suganthan, P.N.2
-
10
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3): 61-74, 1999.
-
(1999)
Advances in Large Margin Classifiers
, vol.10
, Issue.3
, pp. 61-74
-
-
Platt, J.1
-
12
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12: 2825-2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
14
-
-
84945948591
-
-
Coimbra, Portugal, September 8-11, 2015. Proceedings, chapter A Proactive Intelligent Decision Support System for Predicting the Popularity of Online News Springer International Publishing, Cham
-
K. Fernandes, P. Vinagre, and P. Cortez. Progress in Artificial Intelligence: 17th Portuguese Conference on Artificial Intelligence, EPIA 2015, Coimbra, Portugal, September 8-11, 2015. Proceedings, chapter A Proactive Intelligent Decision Support System for Predicting the Popularity of Online News, pages 535-546. Springer International Publishing, Cham, 2015.
-
(2015)
Progress in Artificial Intelligence: 17th Portuguese Conference on Artificial Intelligence, EPIA 2015
, pp. 535-546
-
-
Fernandes, K.1
Vinagre, P.2
Cortez, P.3
-
15
-
-
85019206789
-
Apprentissage d'ordonnancement et influence de l'ambiguïté pour la prédiction d'activité sur les réseaux sociaux
-
Nancy, France, France, March
-
F. Kawala, E. Gaussier, A. Douzal-Chouakria, and E. Diemert. Apprentissage d'ordonnancement et influence de l'ambiguïté pour la prédiction d'activité sur les réseaux sociaux. In Coria'2014, pages 1-15, Nancy, France, France, March 2014.
-
(2014)
Coria'2014
, pp. 1-15
-
-
Kawala, F.1
Gaussier, E.2
Douzal-Chouakria, A.3
Diemert, E.4
|