메뉴 건너뛰기




Volumn , Issue , 2016, Pages 325-333

Fairness in Learning: Classic and contextual bandits

Author keywords

[No Author keywords available]

Indexed keywords

FUNCTIONS; PROBABILITY; STOCHASTIC SYSTEMS;

EID: 85018868407     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (481)

References (27)
  • 3
    • 84919787147 scopus 로고    scopus 로고
    • Taming the monster: A fast and simple algorithm for contextual bandits
    • Beijing, China, 21-26 June 2014
    • Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E. Schapire. Taming the monster: A fast and simple algorithm for contextual bandits. In Proceedings of ICML 2014, Beijing, China, 21-26 June 2014, pages 1638-1646, 2014.
    • (2014) Proceedings of ICML 2014 , pp. 1638-1646
    • Agarwal, A.1    Hsu, D.J.2    Kale, S.3    Langford, J.4    Li, L.5    Schapire, R.E.6
  • 5
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2-3):235-256, 2002.
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 6
    • 84991702850 scopus 로고    scopus 로고
    • Big data's disparate impact
    • Available at SSRN
    • Solon Barocas and Andrew D. Selbst. Big data's disparate impact. California Law Review, 104, 2016. Available at SSRN: http://ssrn.com/abstract=2477899.
    • (2016) California Law Review , vol.104
    • Barocas, S.1    Selbst, A.D.2
  • 8
    • 84862295780 scopus 로고    scopus 로고
    • Contextual bandit algorithms with supervised learning guarantees
    • Fort Lauderdale, USA, April 11-13 2011
    • Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandit algorithms with supervised learning guarantees. In Proceedings of AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pages 19-26, 2011.
    • (2011) Proceedings of AISTATS 2011 , pp. 19-26
    • Beygelzimer, A.1    Langford, J.2    Li, L.3    Reyzin, L.4    Schapire, R.E.5
  • 9
    • 84874045238 scopus 로고    scopus 로고
    • Regret analysis of stochastic and nonstochastic multi-armed bandit problems
    • Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Machine Learning, 5(1):1-122, 2012.
    • (2012) Machine Learning , vol.5 , Issue.1 , pp. 1-122
    • Bubeck, S.1    Cesa-Bianchi, N.2
  • 10
    • 85018909271 scopus 로고    scopus 로고
    • Artificial intolerance
    • March 28
    • Nanette Byrnes. Artificial intolerance. MIT Technology Review, March 28 2016.
    • (2016) MIT Technology Review
    • Byrnes, N.1
  • 11
    • 77958063401 scopus 로고    scopus 로고
    • Three naive bayes approaches for discrimination-free classification
    • Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery, 21(2):277-292, 2010.
    • (2010) Data Mining and Knowledge Discovery , vol.21 , Issue.2 , pp. 277-292
    • Calders, T.1    Verwer, S.2
  • 12
    • 84862295531 scopus 로고    scopus 로고
    • Contextual bandits with linear payoff functions
    • Fort Lauderdale, USA, April 11-13, 2011
    • Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff functions. In Proceedings of AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pages 208-214, 2011.
    • (2011) Proceedings of AISTATS 2011 , pp. 208-214
    • Chu, W.1    Li, L.2    Reyzin, L.3    Schapire, R.E.4
  • 13
    • 85015239216 scopus 로고    scopus 로고
    • Regulating by robot: Administrative decision-making in the Machine-learning era
    • Forthcoming
    • Cary Coglianese and David Lehr. Regulating by robot: Administrative decision-making in the machine-learning era. Georgetown Law Journal, 2016. Forthcoming.
    • (2016) Georgetown Law Journal
    • Coglianese, C.1    Lehr, D.2
  • 17
    • 85018887437 scopus 로고    scopus 로고
    • Fairness in learning: Classic and contextual bandits
    • Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth. Fairness in learning: Classic and contextual bandits. CoRR, abs/1605.07139, 2016. URL http://arxiv.org/abs/1605.07139.
    • (2016) CoRR
    • Joseph, M.1    Kearns, M.2    Morgenstern, J.3    Roth, A.4
  • 18
    • 84857172480 scopus 로고    scopus 로고
    • Fairness-aware learning through regularization approach
    • 2011 IEEE 11th International Conference on IEEE
    • Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regularization approach. In Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on, pages 643-650. IEEE, 2011.
    • (2011) Data Mining Workshops (ICDMW) , pp. 643-650
    • Kamishima, T.1    Akaho, S.2    Sakuma, J.3
  • 20
    • 0002899547 scopus 로고
    • Asymptotically efficient adaptive allocation rules
    • Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4-22, 1985.
    • (1985) Advances in Applied Mathematics , vol.6 , Issue.1 , pp. 4-22
    • Lai, T.L.1    Robbins, H.2
  • 22
    • 79958797519 scopus 로고    scopus 로고
    • Knows what it knows: A framework for self-aware learning
    • Lihong Li, Michael L Littman, Thomas J Walsh, and Alexander L Strehl. Knows what it knows: a framework for self-aware learning. Machine learning, 82(3):399-443, 2011.
    • (2011) Machine Learning , vol.82 , Issue.3 , pp. 399-443
    • Li, L.1    Littman, M.L.2    Walsh, T.J.3    Strehl, A.L.4
  • 23
    • 80052678955 scopus 로고    scopus 로고
    • k-nn as an implementation of situation testing for discrimination discovery and prevention
    • ACM
    • Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini. k-nn as an implementation of situation testing for discrimination discovery and prevention. In Proceedings of ACM SIGKDD 2011, pages 502-510. ACM, 2011.
    • (2011) Proceedings of ACM SIGKDD 2011 , pp. 502-510
    • Luong, B.T.1    Ruggieri, S.2    Turini, F.3
  • 24
    • 84964677046 scopus 로고    scopus 로고
    • Can an algorithm hire better than a human?
    • June 25
    • Clair C Miller. Can an algorithm hire better than a human? The New York Times, June 25 2015.
    • (2015) The New York Times
    • Miller, C.C.1
  • 25
    • 85018919023 scopus 로고    scopus 로고
    • Predictive policing using Machine learning to detect patterns of crime
    • August
    • Cynthia Rudin. Predictive policing using machine learning to detect patterns of crime. Wired Magazine, August 2013.
    • (2013) Wired Magazine
    • Rudin, C.1
  • 26
    • 85162058047 scopus 로고    scopus 로고
    • Online linear regression and its application to model-based reinforcement learning
    • Alexander L Strehl and Michael L Littman. Online linear regression and its application to model-based reinforcement learning. In Advances in Neural Information Processing Systems, pages 1417-1424, 2008.
    • (2008) Advances in Neural Information Processing Systems , pp. 1417-1424
    • Strehl, A.L.1    Littman, M.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.