-
1
-
-
84897541181
-
Large-scale bandit problems and kwik learning
-
Jacob D. Abernethy, Kareem Amin, Moez Draief, and Michael Kearns. Large-scale bandit problems and kwik learning. In Proceedings of (ICML-13), pages 588-596, 2013.
-
(2013)
Proceedings of (ICML-13)
, pp. 588-596
-
-
Abernethy, J.D.1
Amin, K.2
Draief, M.3
Kearns, M.4
-
2
-
-
85018882138
-
Auditing black-box models by obscuring features
-
Philip Adler, Casey Falk, Sorelle A. Friedler, Gabriel Rybeck, Carlos Scheidegger, Brandon Smith, and Suresh Venkatasubramanian. Auditing black-box models by obscuring features. CoRR, abs/1602.07043, 2016. URL http://arxiv.org/abs/1602.07043.
-
(2016)
CoRR
-
-
Adler, P.1
Falk, C.2
Friedler, S.A.3
Rybeck, G.4
Scheidegger, C.5
Smith, B.6
Venkatasubramanian, S.7
-
3
-
-
84919787147
-
Taming the monster: A fast and simple algorithm for contextual bandits
-
Beijing, China, 21-26 June 2014
-
Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E. Schapire. Taming the monster: A fast and simple algorithm for contextual bandits. In Proceedings of ICML 2014, Beijing, China, 21-26 June 2014, pages 1638-1646, 2014.
-
(2014)
Proceedings of ICML 2014
, pp. 1638-1646
-
-
Agarwal, A.1
Hsu, D.J.2
Kale, S.3
Langford, J.4
Li, L.5
Schapire, R.E.6
-
5
-
-
0036568025
-
Finite-time analysis of the multiarmed bandit problem
-
Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2-3):235-256, 2002.
-
(2002)
Machine Learning
, vol.47
, Issue.2-3
, pp. 235-256
-
-
Auer, P.1
Cesa-Bianchi, N.2
Fischer, P.3
-
6
-
-
84991702850
-
Big data's disparate impact
-
Available at SSRN
-
Solon Barocas and Andrew D. Selbst. Big data's disparate impact. California Law Review, 104, 2016. Available at SSRN: http://ssrn.com/abstract=2477899.
-
(2016)
California Law Review
, vol.104
-
-
Barocas, S.1
Selbst, A.D.2
-
8
-
-
84862295780
-
Contextual bandit algorithms with supervised learning guarantees
-
Fort Lauderdale, USA, April 11-13 2011
-
Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandit algorithms with supervised learning guarantees. In Proceedings of AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pages 19-26, 2011.
-
(2011)
Proceedings of AISTATS 2011
, pp. 19-26
-
-
Beygelzimer, A.1
Langford, J.2
Li, L.3
Reyzin, L.4
Schapire, R.E.5
-
9
-
-
84874045238
-
Regret analysis of stochastic and nonstochastic multi-armed bandit problems
-
Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Machine Learning, 5(1):1-122, 2012.
-
(2012)
Machine Learning
, vol.5
, Issue.1
, pp. 1-122
-
-
Bubeck, S.1
Cesa-Bianchi, N.2
-
10
-
-
85018909271
-
Artificial intolerance
-
March 28
-
Nanette Byrnes. Artificial intolerance. MIT Technology Review, March 28 2016.
-
(2016)
MIT Technology Review
-
-
Byrnes, N.1
-
11
-
-
77958063401
-
Three naive bayes approaches for discrimination-free classification
-
Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery, 21(2):277-292, 2010.
-
(2010)
Data Mining and Knowledge Discovery
, vol.21
, Issue.2
, pp. 277-292
-
-
Calders, T.1
Verwer, S.2
-
12
-
-
84862295531
-
Contextual bandits with linear payoff functions
-
Fort Lauderdale, USA, April 11-13, 2011
-
Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff functions. In Proceedings of AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pages 208-214, 2011.
-
(2011)
Proceedings of AISTATS 2011
, pp. 208-214
-
-
Chu, W.1
Li, L.2
Reyzin, L.3
Schapire, R.E.4
-
13
-
-
85015239216
-
Regulating by robot: Administrative decision-making in the Machine-learning era
-
Forthcoming
-
Cary Coglianese and David Lehr. Regulating by robot: Administrative decision-making in the machine-learning era. Georgetown Law Journal, 2016. Forthcoming.
-
(2016)
Georgetown Law Journal
-
-
Coglianese, C.1
Lehr, D.2
-
14
-
-
84856446756
-
Fairness through awareness
-
ACM
-
Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through awareness. In Proceedings of ITCS 2012, pages 214-226. ACM, 2012.
-
(2012)
Proceedings of ITCS 2012
, pp. 214-226
-
-
Dwork, C.1
Hardt, M.2
Pitassi, T.3
Reingold, O.4
Zemel, R.5
-
15
-
-
84954161181
-
Certifying and removing disparate impact
-
Sydney, NSW, Australia, August 10-13, 2015
-
Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian. Certifying and removing disparate impact. In Proceedings of ACM SIGKDD 2015, Sydney, NSW, Australia, August 10-13, 2015, pages 259-268, 2015.
-
(2015)
Proceedings of ACM SIGKDD 2015
, pp. 259-268
-
-
Feldman, M.1
Friedler, S.A.2
Moeller, J.3
Scheidegger, C.4
Venkatasubramanian, S.5
-
17
-
-
85018887437
-
Fairness in learning: Classic and contextual bandits
-
Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth. Fairness in learning: Classic and contextual bandits. CoRR, abs/1605.07139, 2016. URL http://arxiv.org/abs/1605.07139.
-
(2016)
CoRR
-
-
Joseph, M.1
Kearns, M.2
Morgenstern, J.3
Roth, A.4
-
18
-
-
84857172480
-
Fairness-aware learning through regularization approach
-
2011 IEEE 11th International Conference on IEEE
-
Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regularization approach. In Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on, pages 643-650. IEEE, 2011.
-
(2011)
Data Mining Workshops (ICDMW)
, pp. 643-650
-
-
Kamishima, T.1
Akaho, S.2
Sakuma, J.3
-
20
-
-
0002899547
-
Asymptotically efficient adaptive allocation rules
-
Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4-22, 1985.
-
(1985)
Advances in Applied Mathematics
, vol.6
, Issue.1
, pp. 4-22
-
-
Lai, T.L.1
Robbins, H.2
-
22
-
-
79958797519
-
Knows what it knows: A framework for self-aware learning
-
Lihong Li, Michael L Littman, Thomas J Walsh, and Alexander L Strehl. Knows what it knows: a framework for self-aware learning. Machine learning, 82(3):399-443, 2011.
-
(2011)
Machine Learning
, vol.82
, Issue.3
, pp. 399-443
-
-
Li, L.1
Littman, M.L.2
Walsh, T.J.3
Strehl, A.L.4
-
23
-
-
80052678955
-
k-nn as an implementation of situation testing for discrimination discovery and prevention
-
ACM
-
Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini. k-nn as an implementation of situation testing for discrimination discovery and prevention. In Proceedings of ACM SIGKDD 2011, pages 502-510. ACM, 2011.
-
(2011)
Proceedings of ACM SIGKDD 2011
, pp. 502-510
-
-
Luong, B.T.1
Ruggieri, S.2
Turini, F.3
-
24
-
-
84964677046
-
Can an algorithm hire better than a human?
-
June 25
-
Clair C Miller. Can an algorithm hire better than a human? The New York Times, June 25 2015.
-
(2015)
The New York Times
-
-
Miller, C.C.1
-
25
-
-
85018919023
-
Predictive policing using Machine learning to detect patterns of crime
-
August
-
Cynthia Rudin. Predictive policing using machine learning to detect patterns of crime. Wired Magazine, August 2013.
-
(2013)
Wired Magazine
-
-
Rudin, C.1
-
26
-
-
85162058047
-
Online linear regression and its application to model-based reinforcement learning
-
Alexander L Strehl and Michael L Littman. Online linear regression and its application to model-based reinforcement learning. In Advances in Neural Information Processing Systems, pages 1417-1424, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, pp. 1417-1424
-
-
Strehl, A.L.1
Littman, M.L.2
-
27
-
-
84938910304
-
Learning fair representations
-
Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations. In Proceedings of (ICML-13), pages 325-333, 2013.
-
(2013)
Proceedings of (ICML-13)
, pp. 325-333
-
-
Zemel, R.1
Wu, Y.2
Swersky, K.3
Pitassi, T.4
Dwork, C.5
|