메뉴 건너뛰기




Volumn 75, Issue , 2017, Pages S62-S70

Corrigendum to “Symptom severity prediction from neuropsychiatric clinical records: Overview of 2016 CEGS N-GRID shared tasks Track 2” [J Biomed Inform. 2017 Nov;75S:S62–S70](S1532046417300874)(10.1016/j.jbi.2017.04.017));Symptom severity prediction from neuropsychiatric clinical records: Overview of 2016 CEGS N-GRID shared tasks Track 2

Author keywords

CEGS N GRID; Clinical NLP; Neuropsychiatric records; Shared tasks; Symptom severity classification

Indexed keywords

LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 85018457275     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2018.08.015     Document Type: Erratum
Times cited : (30)

References (24)
  • 1
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: towards better research applications and clinical care
    • Jensen, P.B., Jensen, L.J., Brunak, S., Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13:6 (2012), 395–405.
    • (2012) Nat. Rev. Genet. , vol.13 , Issue.6 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 7
    • 34548516061 scopus 로고    scopus 로고
    • Identifying patient smoking status from medical discharge records
    • Uzuner, Ö., Goldstein, I., Luo, Y., Kohane, I., Identifying patient smoking status from medical discharge records. J. Am. Med. Inform. Assoc. 15:1 (2008), 14–24.
    • (2008) J. Am. Med. Inform. Assoc. , vol.15 , Issue.1 , pp. 14-24
    • Uzuner, Ö.1    Goldstein, I.2    Luo, Y.3    Kohane, I.4
  • 9
    • 78149480799 scopus 로고    scopus 로고
    • Extracting medication information from clinical text
    • Uzuner, Ö., Solti, I., Cadag, E., Extracting medication information from clinical text. J. Am. Med. Inform. Assoc. 17:5 (2010), 514–518.
    • (2010) J. Am. Med. Inform. Assoc. , vol.17 , Issue.5 , pp. 514-518
    • Uzuner, Ö.1    Solti, I.2    Cadag, E.3
  • 10
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/va challenge on concepts, assertions, and relations in clinical text
    • Uzuner, Ö., South, B.R., Shen, S., DuVall, S.L., 2010 i2b2/va challenge on concepts, assertions, and relations in clinical text. J. Am. Med. Inform. Assoc. 18:5 (2011), 552–556.
    • (2011) J. Am. Med. Inform. Assoc. , vol.18 , Issue.5 , pp. 552-556
    • Uzuner, Ö.1    South, B.R.2    Shen, S.3    DuVall, S.L.4
  • 11
    • 84872234230 scopus 로고    scopus 로고
    • Evaluating the state of the art in coreference resolution for electronic medical records
    • Uzuner, O., Bodnari, A., Shen, S., Forbush, T., Pestian, J., South, B.R., Evaluating the state of the art in coreference resolution for electronic medical records. J. Am. Med. Inform. Assoc. 19:5 (2012), 786–791.
    • (2012) J. Am. Med. Inform. Assoc. , vol.19 , Issue.5 , pp. 786-791
    • Uzuner, O.1    Bodnari, A.2    Shen, S.3    Forbush, T.4    Pestian, J.5    South, B.R.6
  • 12
    • 84882744737 scopus 로고    scopus 로고
    • Evaluating temporal relations in clinical text: 2012 i2b2 challenge
    • Sun, W., Rumshisky, A., Uzuner, O., Evaluating temporal relations in clinical text: 2012 i2b2 challenge. J. Am. Med. Inform. Assoc. 20:5 (2013), 806–813.
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , Issue.5 , pp. 806-813
    • Sun, W.1    Rumshisky, A.2    Uzuner, O.3
  • 13
    • 84940054677 scopus 로고    scopus 로고
    • Automated systems for the de-identification of longitudinal clinical narratives: overview of 2014 i2b2/uthealth shared task track 1
    • Stubbs, A., Kotfila, C., Uzuner, Ö., Automated systems for the de-identification of longitudinal clinical narratives: overview of 2014 i2b2/uthealth shared task track 1. J. Biomed. Inform. 58 (2015), S11–S19.
    • (2015) J. Biomed. Inform. , vol.58 , pp. S11-S19
    • Stubbs, A.1    Kotfila, C.2    Uzuner, Ö.3
  • 14
    • 85021797102 scopus 로고    scopus 로고
    • Ö. Uzuner, De-identification of psychiatric intake records: overview of 2016 cegs n-grid shared tasks track 1, J. Biomed. Inform. 75 (2017) S4–S18.
    • A. Stubbs, M. Filannino, Ö. Uzuner, De-identification of psychiatric intake records: overview of 2016 cegs n-grid shared tasks track 1, J. Biomed. Inform. 75 (2017) S4–S18.
    • Stubbs, A.1    Filannino, M.2
  • 15
    • 84940056554 scopus 로고    scopus 로고
    • Identifying risk factors for heart disease over time: overview of 2014 i2b2/uthealth shared task track 2
    • Stubbs, A., Kotfila, C., Xu, H., Uzuner, Ö., Identifying risk factors for heart disease over time: overview of 2014 i2b2/uthealth shared task track 2. J. Biomed. Inform. 58 (2015), S67–S77.
    • (2015) J. Biomed. Inform. , vol.58 , pp. S67-S77
    • Stubbs, A.1    Kotfila, C.2    Xu, H.3    Uzuner, Ö.4
  • 16
    • 84943612108 scopus 로고    scopus 로고
    • Clinician's Guide to Psychological Assessment and Testing: with Forms and Templates for EffectivePractice
    • Springer Publishing Company
    • Spores, J.M., Clinician's Guide to Psychological Assessment and Testing: with Forms and Templates for EffectivePractice. 2012, Springer Publishing Company.
    • (2012)
    • Spores, J.M.1
  • 18
    • 84943804461 scopus 로고    scopus 로고
    • Limitations of mt quality estimation supervised systems: the tails prediction problem
    • Dublin City University and Association for Computational Linguistics
    • Moreau, E., Vogel, C., Limitations of mt quality estimation supervised systems: the tails prediction problem. Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics, 2014, Dublin City University and Association for Computational Linguistics, 2205–2216.
    • (2014) Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics , pp. 2205-2216
    • Moreau, E.1    Vogel, C.2
  • 19
    • 84943798555 scopus 로고    scopus 로고
    • Improving evaluation of machine translation quality estimation
    • Graham, Y., et al. Improving evaluation of machine translation quality estimation. ACL (1), 2015, 1804–1813.
    • (2015) ACL (1) , pp. 1804-1813
    • Graham, Y.1
  • 21
    • 85020192840 scopus 로고    scopus 로고
    • Ordinal convolutional neural networks for predicting rdoc positive valence psychiatric symptom severity scores, J. Biomed. Inform. 75 (2017) S85–S93.
    • R. Kavuluru, A. Rios, Ordinal convolutional neural networks for predicting rdoc positive valence psychiatric symptom severity scores, J. Biomed. Inform. 75 (2017) S85–S93.
    • Kavuluru, R.1    Rios, A.2
  • 22
    • 85020486290 scopus 로고    scopus 로고
    • Automatic recognition of symptom severity from psychiatric evaluation records, J. Biomed. Inform. 75 (2017) S71–S84.
    • T. Goodwin, R. Maldonado, S.M. Harabagiu, Automatic recognition of symptom severity from psychiatric evaluation records, J. Biomed. Inform. 75 (2017) S71–S84.
    • Goodwin, T.1    Maldonado, R.2    Harabagiu, S.M.3
  • 23
    • 85019845980 scopus 로고    scopus 로고
    • Symptom severity classification with gradient tree boosting, J. Biomed. Inform. 75 (2017) S105–S111.
    • Y. Liu, Y. Gu, J.C. Nguyen, H. Li, J. Zhang, Y. Gao, Y. Huang, Symptom severity classification with gradient tree boosting, J. Biomed. Inform. 75 (2017) S105–S111.
    • Liu, Y.1    Gu, Y.2    Nguyen, J.C.3    Li, H.4    Zhang, J.5    Gao, Y.6    Huang, Y.7
  • 24
    • 85020425489 scopus 로고    scopus 로고
    • Counting trees in random forests: predicting symptom severity in psychiatric intake reports, J. Biomed. Inform. 75 (2017) S112–S119.
    • E. Scheurwegs, M. Sushil, S. Tulkens, W. Daelemans, K. Luyckx, Counting trees in random forests: predicting symptom severity in psychiatric intake reports, J. Biomed. Inform. 75 (2017) S112–S119.
    • Scheurwegs, E.1    Sushil, M.2    Tulkens, S.3    Daelemans, W.4    Luyckx, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.