메뉴 건너뛰기




Volumn 267, Issue 2, 2017, Pages 117-129

MRF-ANN: a machine learning approach for automated ER scoring of breast cancer immunohistochemical images

Author keywords

Artificial neural network; breast cancer; ER score; immunohistochemistry; Markov random field

Indexed keywords

AUTOMATION; CELLS; COLOR; CYTOLOGY; DECISION MAKING; DECISION SUPPORT SYSTEMS; DISEASES; IMAGE SEGMENTATION; LEARNING SYSTEMS; MARKOV PROCESSES; MAXIMUM PRINCIPLE; MEDICAL IMAGING;

EID: 85017400066     PISSN: 00222720     EISSN: 13652818     Source Type: Journal    
DOI: 10.1111/jmi.12552     Document Type: Article
Times cited : (35)

References (31)
  • 1
    • 0031915998 scopus 로고    scopus 로고
    • Assessment of prognostic and predictive factors in breast cancer by immunohistochemistry
    • Allred, D. C. (1998) Assessment of prognostic and predictive factors in breast cancer by immunohistochemistry. Mod Pathol. 11, 155–68.
    • (1998) Mod Pathol , vol.11 , pp. 155-168
    • Allred, D.C.1
  • 3
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. B Met. 36, 192–236.
    • (1974) J. Roy. Stat. Soc. B Met , vol.36 , pp. 192-236
    • Besag, J.1
  • 4
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • Besag, J. (1986) On the statistical analysis of dirty pictures.J. Roy. Stat. Soc. B Met. 48, 259–302.
    • (1986) J. Roy. Stat. Soc. B Met , vol.48 , pp. 259-302
    • Besag, J.1
  • 5
    • 0016697211 scopus 로고
    • On the estimation and testing of spatial interaction in Gaussian lattice processes
    • Besag, J. E. & Moran, P. A. (1975) On the estimation and testing of spatial interaction in Gaussian lattice processes. Biometrika 62, 555–562.
    • (1975) Biometrika , vol.62 , pp. 555-562
    • Besag, J.E.1    Moran, P.A.2
  • 7
    • 0033098984 scopus 로고    scopus 로고
    • On the estimation of Markov random field parameters
    • Borges, C. F. (1999) On the estimation of Markov random field parameters. IEEE T. Pattern Anal. 21, 216–224.
    • (1999) IEEE T. Pattern Anal , vol.21 , pp. 216-224
    • Borges, C.F.1
  • 8
    • 0023123263 scopus 로고
    • Modeling and segmentation of noisy and textured images using Gibbs random fields
    • Derin, H. & Elliott, H. (1987) Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE T. Pattern Anal. 9, 39–55.
    • (1987) IEEE T. Pattern Anal , vol.9 , pp. 39-55
    • Derin, H.1    Elliott, H.2
  • 10
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman, S. & Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE T. Pattern Anal. 6, 721–741.
    • (1984) IEEE T. Pattern Anal , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 14
    • 0041339533 scopus 로고    scopus 로고
    • Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study
    • Ibáñez, M. V. & Simó, A. (2003) Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study. Pattern Recogn. Lett. 24, 2377–2389.
    • (2003) Pattern Recogn. Lett. , vol.24 , pp. 2377-2389
    • Ibáñez, M.V.1    Simó, A.2
  • 15
    • 77956942046 scopus 로고    scopus 로고
    • Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization
    • Jung, C. & Kim, C. (2010) Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization. IEEE T. Bio-Med. Eng. 57, 2600–2604.
    • (2010) IEEE T. Bio-Med. Eng , vol.57 , pp. 2600-2604
    • Jung, C.1    Kim, C.2
  • 18
    • 84907369888 scopus 로고    scopus 로고
    • Cell morphology based classification for red cells in blood smear images
    • Lee, H. & Chen, Y.-P. P. (2014) Cell morphology based classification for red cells in blood smear images. Pattern Recogn Lett. 49, 155–161.
    • (2014) Pattern Recogn Lett , vol.49 , pp. 155-161
    • Lee, H.1    Chen, Y.-P.P.2
  • 21
    • 84870065068 scopus 로고    scopus 로고
    • Class-specific weighting for Markov random field estimation: application to medical image segmentation
    • Monaco, J. P. & Madabhushi, A. (2012) Class-specific weighting for Markov random field estimation: application to medical image segmentation. Med. Image Anal. 16, 1477–1489.
    • (2012) Med. Image Anal , vol.16 , pp. 1477-1489
    • Monaco, J.P.1    Madabhushi, A.2
  • 22
    • 84901417604 scopus 로고    scopus 로고
    • Automatic segmentation, counting, size determination and classification of white blood cells
    • Nazlibilek, S., Karacor, D., Ercan, T., Sazli, M. H., Kalender, O. & Ege, Y. (2014) Automatic segmentation, counting, size determination and classification of white blood cells. Measurement 55, 58–65.
    • (2014) Measurement , vol.55 , pp. 58-65
    • Nazlibilek, S.1    Karacor, D.2    Ercan, T.3    Sazli, M.H.4    Kalender, O.5    Ege, Y.6
  • 23
    • 0027658896 scopus 로고
    • A review on image segmentation techniques
    • Pal, N. R. & Pal, S. K. (1993) A review on image segmentation techniques. Pattern Recogn. 26, 1277–1294.
    • (1993) Pattern Recogn. , vol.26 , pp. 1277-1294
    • Pal, N.R.1    Pal, S.K.2
  • 25
    • 84925635828 scopus 로고    scopus 로고
    • Computer aided system for red blood cell classification in blood smear image
    • Tomari, R., Zakaria, W. N. W., Jamil, M. M. A., Nor, F. M. & Fuad, N. F. N. (2014) Computer aided system for red blood cell classification in blood smear image. Procedia Comput. Sci. 42, 206–213.
    • (2014) Procedia Comput. Sci. , vol.42 , pp. 206-213
    • Tomari, R.1    Zakaria, W.N.W.2    Jamil, M.M.A.3    Nor, F.M.4    Fuad, N.F.N.5
  • 26
    • 78650900647 scopus 로고    scopus 로고
    • ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67
    • Tuominen, V. J., Ruotoistenmaki, S., Viitanen, A., Jumppanen, M. & Isola, J. (2010) ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 12, R56.
    • (2010) Breast Cancer Res. , vol.12 , pp. R56
    • Tuominen, V.J.1    Ruotoistenmaki, S.2    Viitanen, A.3    Jumppanen, M.4    Isola, J.5
  • 27
    • 0034325418 scopus 로고    scopus 로고
    • MRF parameter estimation by MCMC method
    • Wang, L., Liu, J. & Li, S. Z. (2000) MRF parameter estimation by MCMC method. Pattern Recogn 33, 1919–1925.
    • (2000) Pattern Recogn , vol.33 , pp. 1919-1925
    • Wang, L.1    Liu, J.2    Li, S.Z.3
  • 28
    • 84896840603 scopus 로고    scopus 로고
    • Automatic Ki-67 counting using robust cell detection and online dictionary learning
    • Xing, F., Su, H., Neltner, J. & Yang, L. (2014) Automatic Ki-67 counting using robust cell detection and online dictionary learning. IEEE T. Bio-Med. Eng. 61, 859–870.
    • (2014) IEEE T. Bio-Med. Eng , vol.61 , pp. 859-870
    • Xing, F.1    Su, H.2    Neltner, J.3    Yang, L.4
  • 30
    • 0037410691 scopus 로고    scopus 로고
    • MRF parameter estimation by an accelerated method
    • Yu, Y. & Cheng, Q. (2003) MRF parameter estimation by an accelerated method. Pattern Recogn. Lett. 24, 1251–1259.
    • (2003) Pattern Recogn. Lett. , vol.24 , pp. 1251-1259
    • Yu, Y.1    Cheng, Q.2
  • 31
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang, Y., Brady, M. & Smith, S. (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE T. Med. Imaging 20, 45–57.
    • (2001) IEEE T. Med. Imaging , vol.20 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.