-
2
-
-
84902532101
-
Aprotic and aqueous Li-O2 batteries
-
Lu, J., Park, J. B., Sun, Y.-K., Wu, F., Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 114, 5611-5640 (2014).
-
(2014)
Chem. Rev.
, vol.114
, pp. 5611-5640
-
-
Lu, J.1
Park, J.B.2
Sun, Y.-K.3
Wu, F.4
Amine, K.5
-
3
-
-
84929223492
-
Prospects and limits of energy storage in batteries
-
Abraham, K. M. Prospects and limits of energy storage in batteries. J. Phys. Chem. Lett. 6, 830-844 (2015).
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 830-844
-
-
Abraham, K.M.1
-
4
-
-
84961289081
-
The lithium/air battery: Still an emerging system or a practical reality?
-
Grande, L., et al. The lithium/air battery: Still an emerging system or a practical reality? Adv. Mater. 27, 784-800 (2015).
-
(2015)
Adv. Mater.
, vol.27
, pp. 784-800
-
-
Grande, L.1
-
5
-
-
0029769438
-
A polymer electrolyte-based rechargeable lithium/oxygen battery
-
Abraham, K. M., Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1-5 (1996).
-
(1996)
J. Electrochem. Soc.
, vol.143
, pp. 1-5
-
-
Abraham, K.M.1
Jiang, Z.2
-
6
-
-
32044453597
-
Rechargeable Li2O2 electrode for lithium batteries
-
Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390-1393 (2006).
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 1390-1393
-
-
Ogasawara, T.1
Debart, A.2
Holzapfel, M.3
Novak, P.4
Bruce, P.G.5
-
7
-
-
84855328636
-
A critical review of Li/air batteries
-
Christensen, J., et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1-R30 (2012).
-
(2012)
J. Electrochem. Soc.
, vol.159
, pp. R1-R30
-
-
Christensen, J.1
-
8
-
-
85003502871
-
A review of solid electrolyte interphases on lithium metal anode
-
Cheng, X.-B., et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016).
-
(2016)
Adv. Sci.
, vol.3
, pp. 1500213
-
-
Cheng, X.-B.1
-
9
-
-
83655183076
-
Li-O2 and Li-S batteries with high energy storage
-
Bruce, P. G., Freunberger, S. A., Hardwick, L. J., Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19-29 (2012).
-
(2012)
Nat. Mater.
, vol.11
, pp. 19-29
-
-
Bruce, P.G.1
Freunberger, S.A.2
Hardwick, L.J.3
Tarascon, J.-M.4
-
10
-
-
84987958627
-
Quantifying the promise of 'beyond' Li-ion batteries
-
Oleg, S., Vikram, P., Abhishek, K., Chayanit, C., Venkatasubramanian, V. Quantifying the promise of 'beyond' Li-ion batteries. Transl. Mater. Res. 2, 045002 (2015).
-
(2015)
Transl. Mater. Res.
, vol.2
, pp. 045002
-
-
Oleg, S.1
Vikram, P.2
Abhishek, K.3
Chayanit, C.4
Venkatasubramanian, V.5
-
11
-
-
84878842247
-
Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge
-
Adams, B. D., et al. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772-1778 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1772-1778
-
-
Adams, B.D.1
-
12
-
-
84890937223
-
Rate-dependent morphology of Li2O2 growth in Li-O2 batteries
-
Horstmann, B., et al. Rate-dependent morphology of Li2O2 growth in Li-O2 batteries. J. Phys. Chem. Lett. 4, 4217-4222 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 4217-4222
-
-
Horstmann, B.1
-
13
-
-
84911463465
-
The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries
-
Johnson, L., et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 6, 1091-1099 (2014).
-
(2014)
Nat. Chem.
, vol.6
, pp. 1091-1099
-
-
Johnson, L.1
-
14
-
-
84922801308
-
Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries
-
Aetukuri, N. B., et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries. Nat. Chem. 7, 50-56 (2015).
-
(2015)
Nat. Chem.
, vol.7
, pp. 50-56
-
-
Aetukuri, N.B.1
-
15
-
-
84879759104
-
Toward a lithium- A ir" battery: The effect of CO2 on the chemistry of a lithium-oxygen cell
-
Lim, H.-K., et al. Toward a lithium-"air" battery: The effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc. 135, 9733-9742 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 9733-9742
-
-
Lim, H.-K.1
-
16
-
-
84959545936
-
Experimental and computational analysis of the solvent-dependent O2/Li+-O2-redox couple: Standard potentials, coupling strength, implications for lithium-oxygen batteries
-
Kwabi, D. G., et al. Experimental and computational analysis of the solvent-dependent O2/Li+-O2-redox couple: Standard potentials, coupling strength, implications for lithium-oxygen batteries. Angew. Chem. Int. Ed. 55, 3129-3134 (2016).
-
(2016)
Angew. Chem. Int. Ed.
, vol.55
, pp. 3129-3134
-
-
Kwabi, D.G.1
-
17
-
-
84878841989
-
Electron and ion transport in Li2O2
-
Gerbig, O., Merkle, R., Maier, J. Electron and ion transport in Li2O2. Adv. Mater. 25, 3129-3133 (2013).
-
(2013)
Adv. Mater.
, vol.25
, pp. 3129-3133
-
-
Gerbig, O.1
Merkle, R.2
Maier, J.3
-
18
-
-
0000328509
-
Solvent effects on reactivity of organometallic compounds
-
Gutmann, V. Solvent effects on reactivity of organometallic compounds. Coordin. Chem. Rev. 18, 225-255 (1976).
-
(1976)
Coordin. Chem. Rev.
, vol.18
, pp. 225-255
-
-
Gutmann, V.1
-
19
-
-
33746453736
-
Glyme-lithium salt phase behavior
-
Henderson, W. A. Glyme-lithium salt phase behavior. J. Phys. Chem. B 110, 13177-13183 (2006).
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 13177-13183
-
-
Henderson, W.A.1
-
20
-
-
84938150482
-
Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity
-
Burke, C. M., Pande, V., Khetan, A., Viswanathan, V., McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc. Natl Acad. Sci. USA 112, 9293-9298 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 9293-9298
-
-
Burke, C.M.1
Pande, V.2
Khetan, A.3
Viswanathan, V.4
McCloskey, B.D.5
-
21
-
-
84959486035
-
Mechanistic role of Li+ dissociation level in aprotic Li-O2 battery
-
Sharon, D., et al. Mechanistic role of Li+ dissociation level in aprotic Li-O2 battery. ACS Appl. Mater. Interfaces 8, 5300-5307 (2016).
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 5300-5307
-
-
Sharon, D.1
-
22
-
-
84928382764
-
A study of the influence of lithium salt anions on oxygen reduction reactions in Li-air batteries
-
Gunasekara, I., Mukerjee, S., Plichta, E. J., Hendrickson, M. A., Abraham, K. M. A study of the influence of lithium salt anions on oxygen reduction reactions in Li-air batteries. J. Electrochem. Soc. 162, A1055-A1066 (2015).
-
(2015)
J. Electrochem. Soc.
, vol.162
, pp. A1055-A1066
-
-
Gunasekara, I.1
Mukerjee, S.2
Plichta, E.J.3
Hendrickson, M.A.4
Abraham, K.M.5
-
23
-
-
84923341322
-
The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells
-
Schwenke, K. U., Metzger, M., Restle, T., Piana, M., Gasteiger, H. A. The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells. J. Electrochem. Soc. 162, A573-A584 (2015).
-
(2015)
J. Electrochem. Soc.
, vol.162
, pp. A573-A584
-
-
Schwenke, K.U.1
Metzger, M.2
Restle, T.3
Piana, M.4
Gasteiger, H.A.5
-
24
-
-
84857304035
-
The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries
-
Meini, S., Piana, M., Tsiouvaras, N., Garsuch, A., Gasteiger, H. A. The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries. Electrochem. Solid State Lett. 15, A45-A48 (2012).
-
(2012)
Electrochem. Solid State Lett.
, vol.15
, pp. A45-A48
-
-
Meini, S.1
Piana, M.2
Tsiouvaras, N.3
Garsuch, A.4
Gasteiger, H.A.5
-
25
-
-
84886054607
-
Tunneling and polaron charge transport through Li2O2 in Li-O2 batteries
-
Luntz, A. C., et al. Tunneling and polaron charge transport through Li2O2 in Li-O2 batteries. J. Phys. Chem. Lett. 4, 3494-3499 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 3494-3499
-
-
Luntz, A.C.1
-
26
-
-
79960279780
-
Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis
-
Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 660, 254-260 (2011).
-
(2011)
J. Electroanal. Chem.
, vol.660
, pp. 254-260
-
-
Koper, M.T.M.1
-
27
-
-
85027922415
-
Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions
-
Gao, X., Chen, Y., Johnson, L., Bruce, P. G. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 15, 882-888 (2016).
-
(2016)
Nat. Mater.
, vol.15
, pp. 882-888
-
-
Gao, X.1
Chen, Y.2
Johnson, L.3
Bruce, P.G.4
-
28
-
-
84868459772
-
A redox shuttle to facilitate oxygen reduction in the lithium air battery
-
Lacey, M. J., Frith, J. T., Owen, J. R. A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochem. Commun. 26, 74-76 (2013).
-
(2013)
Electrochem. Commun.
, vol.26
, pp. 74-76
-
-
Lacey, M.J.1
Frith, J.T.2
Owen, J.R.3
-
29
-
-
84921318216
-
A new method to prevent degradation of lithium-oxygen batteries: Reduction of superoxide by viologen
-
Yang, L., Frith, J. T., Garcia-Araez, N., Owen, J. R. A new method to prevent degradation of lithium-oxygen batteries: Reduction of superoxide by viologen. Chem. Commun. 51, 1705-1708 (2015).
-
(2015)
Chem. Commun.
, vol.51
, pp. 1705-1708
-
-
Yang, L.1
Frith, J.T.2
Garcia-Araez, N.3
Owen, J.R.4
-
30
-
-
84903289353
-
A solution-phase bifunctional catalyst for lithium-oxygen batteries
-
Sun, D., et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 136, 8941-8946 (2014).
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 8941-8946
-
-
Sun, D.1
-
31
-
-
0000210408
-
Infrared spectrum, structure, vibrational potential function, bonding in the lithium superoxide molecule LiO2
-
Andrews, L. Infrared spectrum, structure, vibrational potential function, bonding in the lithium superoxide molecule LiO2. J. Chem. Phys. 50, 4288-4299 (1969).
-
(1969)
J. Chem. Phys.
, vol.50
, pp. 4288-4299
-
-
Andrews, L.1
-
32
-
-
77955683390
-
Stability of lithium superoxide LiO2 in the gas phase: Computational study of dimerization and disproportionation reactions
-
Bryantsev, V. S., Blanco, M., Faglioni, F. Stability of lithium superoxide LiO2 in the gas phase: Computational study of dimerization and disproportionation reactions. J. Phys. Chem. A 114, 8165-8169 (2010).
-
(2010)
J. Phys. Chem. A
, vol.114
, pp. 8165-8169
-
-
Bryantsev, V.S.1
Blanco, M.2
Faglioni, F.3
-
33
-
-
84955497454
-
A lithium-oxygen battery based on lithium superoxide
-
Lu, J., et al. A lithium-oxygen battery based on lithium superoxide. Nature 529, 377-382 (2016).
-
(2016)
Nature
, vol.529
, pp. 377-382
-
-
Lu, J.1
-
34
-
-
84901632200
-
Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes
-
Visco, S., et al. Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443-1456 (2014).
-
(2014)
J. Solid State Electrochem.
, vol.18
, pp. 1443-1456
-
-
Visco, S.1
-
35
-
-
79954482443
-
Metal-air batteries with high energy density: Li-air versus Zn-air
-
Lee, J.-S., et al. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 1, 34-50 (2011).
-
(2011)
Adv. Energy Mater.
, vol.1
, pp. 34-50
-
-
Lee, J.-S.1
-
36
-
-
84945553004
-
Cycling Li-O2 batteries via LiOH formation and decomposition
-
Liu, T., et al. Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350, 530-533 (2015).
-
(2015)
Science
, vol.350
, pp. 530-533
-
-
Liu, T.1
-
37
-
-
84855927066
-
Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not
-
Radin, M. D., Rodriguez, J. F., Tian, F., Siegel, D. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 134, 1093-1103 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 1093-1103
-
-
Radin, M.D.1
Rodriguez, J.F.2
Tian, F.3
Siegel, D.4
-
38
-
-
84872808244
-
-
Hummelshøj, J. S., Luntz, A. C., Nørskov, J. K. J. Chem. Phys. 138, 034703-034713 (2013).
-
(2013)
J. Chem. Phys.
, vol.138
, pp. 034703-034713
-
-
Hummelshøj, J.S.1
Luntz, A.C.2
Nørskov, J.K.3
-
39
-
-
84860191490
-
Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries
-
McCloskey, B. D., et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 3, 997-1001 (2012).
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 997-1001
-
-
McCloskey, B.D.1
-
40
-
-
84939159062
-
Role of Li2O2@Li2CO3 interfaces on charge transport in nonaqueous Li-air batteries
-
Mekonnen, Y. S., Garcia-Lastra, J. M., Hummelshøj, J. S., Jin, C., Vegge, T. Role of Li2O2@Li2CO3 interfaces on charge transport in nonaqueous Li-air batteries. J. Phys. Chem. C 119, 18066-18073 (2015).
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 18066-18073
-
-
Mekonnen, Y.S.1
Garcia-Lastra, J.M.2
Hummelshøj, J.S.3
Jin, C.4
Vegge, T.5
-
41
-
-
84927722360
-
A direct, soft chemical route to mesoporous metallic lead ruthenium pyrochlore and exploration of its electrochemical properties
-
Oh, S. H., Adams, B., Lee, B., Nazar, L. F. A direct, soft chemical route to mesoporous metallic lead ruthenium pyrochlore and exploration of its electrochemical properties. Chem. Mater. 27, 2322-2331 (2015).
-
(2015)
Chem. Mater.
, vol.27
, pp. 2322-2331
-
-
Oh, S.H.1
Adams, B.2
Lee, B.3
Nazar, L.F.4
-
42
-
-
84919754354
-
The importance of nanometric passivating films on cathodes for Li-air batteries
-
Adams, B. D., et al. The importance of nanometric passivating films on cathodes for Li-air batteries. ACS Nano 8, 12483-12493 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 12483-12493
-
-
Adams, B.D.1
-
43
-
-
84912570291
-
Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction
-
Ganapathy, S., et al. Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction. J. Am. Chem. Soc. 136, 16335-16344 (2014).
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 16335-16344
-
-
Ganapathy, S.1
-
44
-
-
84883218031
-
A facile mechanism for recharging Li2O2 in Li-O2 batteries
-
Kang, S. Y., Mo, Y, Ong, S. P., Ceder, G. A facile mechanism for recharging Li2O2 in Li-O2 batteries. Chem. Mater. 25, 3328-3336 (2013).
-
(2013)
Chem. Mater.
, vol.25
, pp. 3328-3336
-
-
Kang, S.Y.1
Mo, Y.2
Ong, S.P.3
Ceder, G.4
-
45
-
-
84875797128
-
Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth
-
Mitchell, R. R., Gallant, B. M., Shao-Horn, Y. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. 4, 1060-1064 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 1060-1064
-
-
Mitchell, R.R.1
Gallant, B.M.2
Shao-Horn, Y.3
-
46
-
-
84883811127
-
Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries
-
McCloskey, B. D., et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 4, 2989-2993 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 2989-2993
-
-
McCloskey, B.D.1
-
47
-
-
84874064123
-
Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery
-
Yang, J., et al. Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery. Phys. Chem. Chem. Phys. 15, 3764-3771 (2013).
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 3764-3771
-
-
Yang, J.1
-
48
-
-
84916614024
-
Nonaqueous Li-Air batteries: A status report
-
Luntz, A. C., McCloskey, B. D. Nonaqueous Li-Air batteries: A status report. Chem. Rev. 114, 11721-11750 (2014).
-
(2014)
Chem. Rev.
, vol.114
, pp. 11721-11750
-
-
Luntz, A.C.1
McCloskey, B.D.2
-
49
-
-
84863116383
-
Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization
-
Black, R., et al. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902-2905 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 2902-2905
-
-
Black, R.1
-
51
-
-
84879102699
-
Charging a Li-O2 battery using a redox mediator
-
Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O., Bruce, P. G. Charging a Li-O2 battery using a redox mediator. Nat. Chem. 5, 489-494 (2013).
-
(2013)
Nat. Chem.
, vol.5
, pp. 489-494
-
-
Chen, Y.1
Freunberger, S.A.2
Peng, Z.3
Fontaine, O.4
Bruce, P.G.5
-
52
-
-
84984887732
-
A highly active low voltage redox mediator for enhanced rechargeability of lithium-oxygen batteries
-
Kundu, D., Black, R., Adams, B., Nazar, L. F. A highly active low voltage redox mediator for enhanced rechargeability of lithium-oxygen batteries. ACS Cent. Sci. 1, 510-515 (2015).
-
(2015)
ACS Cent. Sci.
, vol.1
, pp. 510-515
-
-
Kundu, D.1
Black, R.2
Adams, B.3
Nazar, L.F.4
-
53
-
-
84908374838
-
TEMPO: A mobile catalyst for rechargeable Li-O2 batteries
-
Bergner, B. J., Schürmann, A., Peppler, K., Garsuch, A., Janek, J. TEMPO: A mobile catalyst for rechargeable Li-O2 batteries. J. Am. Chem. Soc. 136, 15054-15064 (2014).
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 15054-15064
-
-
Bergner, B.J.1
Schürmann, A.2
Peppler, K.3
Garsuch, A.4
Janek, J.5
-
54
-
-
84948410232
-
Understanding the fundamentals of redox mediators in Li-O2 batteries: A case study on nitroxides
-
Bergner, B. J., et al. Understanding the fundamentals of redox mediators in Li-O2 batteries: A case study on nitroxides. Phys. Chem. Chem. Phys. 17, 31769-31779 (2015).
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 31769-31779
-
-
Bergner, B.J.1
-
55
-
-
84927153772
-
Understanding the behavior of Li-oxygen cells containing LiI
-
Kwak, W.-J., et al. Understanding the behavior of Li-oxygen cells containing LiI. J. Mater. Chem. A 3, 8855-8864 (2015).
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 8855-8864
-
-
Kwak, W.-J.1
-
56
-
-
84960933483
-
A self-defense redox mediator for efficient lithium-O2 batteries
-
Zhang, T., Liao, K., He, P., Zhou, H. A self-defense redox mediator for efficient lithium-O2 batteries. Energy Environ. Sci. 9, 1024-1030 (2016).
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 1024-1030
-
-
Zhang, T.1
Liao, K.2
He, P.3
Zhou, H.4
-
57
-
-
84897990720
-
Superior rechargeability and efficiency of lithium-oxygen batteries: Hierarchical air electrode architecture combined with a soluble catalyst
-
Lim, H. D., et al. Superior rechargeability and efficiency of lithium-oxygen batteries: Hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926-3931 (2014).
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 3926-3931
-
-
Lim, H.D.1
-
58
-
-
84923299027
-
Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: The evolution of an aprotic Li-O2 battery
-
Feng, N., He, P., Zhou, H. Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: The evolution of an aprotic Li-O2 battery. ChemSusChem 8, 600-602 (2015).
-
(2015)
ChemSusChem
, vol.8
, pp. 600-602
-
-
Feng, N.1
He, P.2
Zhou, H.3
-
59
-
-
84936863061
-
An organic catalyst for Li-O2 batteries: Dilithium quinone-1, 4-dicarboxylate
-
Liu, J., et al. An organic catalyst for Li-O2 batteries: Dilithium quinone-1, 4-dicarboxylate. ChemSusChem 8, 2198-2203 (2015).
-
(2015)
ChemSusChem
, vol.8
, pp. 2198-2203
-
-
Liu, J.1
-
60
-
-
84995036173
-
Chemical reactions of superoxide anion radical in aprotic solvents
-
Frimer, A. A., Rosenthal, I. Chemical reactions of superoxide anion radical in aprotic solvents. Photochem. Photobiol. 28, 711-717 (1978).
-
(1978)
Photochem. Photobiol.
, vol.28
, pp. 711-717
-
-
Frimer, A.A.1
Rosenthal, I.2
-
62
-
-
0026054298
-
The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts
-
Aurbach, D., Daroux, M., Faguy, P., Yeager, E. The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. Interfacial Electrochem. 297, 225-244 (1991).
-
(1991)
J. Electroanal. Chem. Interfacial Electrochem.
, vol.297
, pp. 225-244
-
-
Aurbach, D.1
Daroux, M.2
Faguy, P.3
Yeager, E.4
-
63
-
-
79957673636
-
Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes
-
Freunberger, S. A., et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040-8047 (2011).
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 8040-8047
-
-
Freunberger, S.A.1
-
64
-
-
77953970926
-
Rechargeable Li-air batteries with carbonate-based liquid electrolytes
-
Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S., Iba, H. Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403-405 (2010).
-
(2010)
Electrochemistry
, vol.78
, pp. 403-405
-
-
Mizuno, F.1
Nakanishi, S.2
Kotani, Y.3
Yokoishi, S.4
Iba, H.5
-
65
-
-
80052496571
-
The lithium-oxygen battery with ether-based electrolytes
-
Freunberger, S. A., et al. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609-8613 (2011).
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 8609-8613
-
-
Freunberger, S.A.1
-
66
-
-
79957596245
-
Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry
-
McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G., Luntz, A. C. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161-1166 (2011).
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, pp. 1161-1166
-
-
McCloskey, B.D.1
Bethune, D.S.2
Shelby, R.M.3
Girishkumar, G.4
Luntz, A.C.5
-
67
-
-
84876831348
-
Interactions of dimethoxy ethane with Li2O2 clusters and likely decomposition mechanisms for Li-O2 batteries
-
Assary, R. S., Lau, K. C., Amine, K., Sun, Y.-K., Curtiss, L. A. Interactions of dimethoxy ethane with Li2O2 clusters and likely decomposition mechanisms for Li-O2 batteries. J. Phys. Chem. C 117, 8041-8049 (2013).
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 8041-8049
-
-
Assary, R.S.1
Lau, K.C.2
Amine, K.3
Sun, Y.-K.4
Curtiss, L.A.5
-
68
-
-
84872179185
-
On the challenge of electrolyte solutions for Li-Air batteries: Monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM
-
Sharon, D., et al. On the challenge of electrolyte solutions for Li-Air batteries: Monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM. J. Phys. Chem. Lett. 4, 127-131 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 127-131
-
-
Sharon, D.1
-
69
-
-
84872148803
-
Li-O2 battery degradation by lithium peroxide (Li2O2): A model study
-
Younesi, R., Hahlin, M., Björefors, F., Johansson, P., Edström, K. Li-O2 battery degradation by lithium peroxide (Li2O2): A model study. Chem. Mater. 25, 77-84 (2012).
-
(2012)
Chem. Mater.
, vol.25
, pp. 77-84
-
-
Younesi, R.1
Hahlin, M.2
Björefors, F.3
Johansson, P.4
Edström, K.5
-
70
-
-
85006483398
-
The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries
-
Cao, R., et al. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries. ChemSusChem, 7, 2436-2440 (2014).
-
(2014)
ChemSusChem
, vol.7
, pp. 2436-2440
-
-
Cao, R.1
-
71
-
-
84904617351
-
Solvent degradation in nonaqueous Li-O2 batteries: Oxidative stability versus H-abstraction
-
Khetan, A., Pitsch, H., Viswanathan, V. Solvent degradation in nonaqueous Li-O2 batteries: Oxidative stability versus H-abstraction. J. Phys. Chem. Lett. 5, 2419-2424 (2014).
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 2419-2424
-
-
Khetan, A.1
Pitsch, H.2
Viswanathan, V.3
-
72
-
-
84920800557
-
Towards a stable organic electrolyte for the lithium oxygen battery
-
Adams, B. D., et al. Towards a stable organic electrolyte for the lithium oxygen battery. Adv. Energy Mater. 5, 1400867 (2015).
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1400867
-
-
Adams, B.D.1
-
73
-
-
84864740853
-
A reversible and higher-rate Li-O2 battery
-
Peng, Z., Freunberger, S. A., Chen, Y., Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 337, 563-566 (2012).
-
(2012)
Science
, vol.337
, pp. 563-566
-
-
Peng, Z.1
Freunberger, S.A.2
Chen, Y.3
Bruce, P.G.4
-
74
-
-
84886312896
-
A stable cathode for the aprotic Li-O2 battery
-
Ottakam Thotiyl, M. M., et al. A stable cathode for the aprotic Li-O2 battery. Nat. Mater. 12, 1050-1056 (2013).
-
(2013)
Nat. Mater.
, vol.12
, pp. 1050-1056
-
-
Ottakam Thotiyl, M.M.1
-
75
-
-
0012721337
-
Reaction of tert-butyl hydroperoxide anion with dimethyl sulfoxide. On the pathway of the superoxide-alkyl halide reaction
-
Gibian, M. J., Ungermann, T. Reaction of tert-butyl hydroperoxide anion with dimethyl sulfoxide. On the pathway of the superoxide-alkyl halide reaction. J. Org. Chem. 41, 2500-2502 (1976).
-
(1976)
J. Org. Chem.
, vol.41
, pp. 2500-2502
-
-
Gibian, M.J.1
Ungermann, T.2
-
76
-
-
84906491169
-
Chemical instability of dimethyl sulfoxide in lithium-air batteries
-
Kwabi, D. G., et al. Chemical instability of dimethyl sulfoxide in lithium-air batteries. J. Phys. Chem. Lett. 5, 2850-2856 (2014).
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 2850-2856
-
-
Kwabi, D.G.1
-
77
-
-
84897546495
-
A new look at the stability of dimethyl sulfoxide and acetonitrile in Li-O2 batteries
-
Younesi, R., Norby, P., Vegge, T. A new look at the stability of dimethyl sulfoxide and acetonitrile in Li-O2 batteries. ECS Electrochem. Lett. 3, A15-A18 (2014).
-
(2014)
ECS Electrochem. Lett.
, vol.3
, pp. A15-A18
-
-
Younesi, R.1
Norby, P.2
Vegge, T.3
-
78
-
-
84884572082
-
Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen
-
Sharon, D., et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 4, 3115-3119 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 3115-3119
-
-
Sharon, D.1
-
79
-
-
84964345801
-
Lithium-air batteries with hybrid electrolytes
-
He, P., Zhang, T., Jiang, J., Zhou, H. Lithium-air batteries with hybrid electrolytes. J. Phys. Chem. Lett. 7, 1267-1280 (2016).
-
(2016)
J. Phys. Chem. Lett.
, vol.7
, pp. 1267-1280
-
-
He, P.1
Zhang, T.2
Jiang, J.3
Zhou, H.4
-
80
-
-
82555193624
-
A lithium-air capacitor-battery based on a hybrid electrolyte
-
Wang, Y., He, P., Zhou, H. A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994-4999 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4994-4999
-
-
Wang, Y.1
He, P.2
Zhou, H.3
-
81
-
-
84920265280
-
Hybrid and aqueous lithium-air batteries
-
Manthiram, A., Li, L. Hybrid and aqueous lithium-air batteries. Adv. Energy Mater. 5, 1401302 (2015).
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1401302
-
-
Manthiram, A.1
Li, L.2
-
82
-
-
84874861470
-
Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3-TiO2 sheet prepared by tape casting method for lithium-air batteries
-
Zhang, M., et al. Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3-TiO2 sheet prepared by tape casting method for lithium-air batteries. J. Power Sources 235, 117-121 (2013).
-
(2013)
J. Power Sources
, vol.235
, pp. 117-121
-
-
Zhang, M.1
-
83
-
-
84959534696
-
A molten salt lithium-oxygen battery
-
Giordani, V., et al. A molten salt lithium-oxygen battery. J. Am. Chem. Soc. 138, 2656-2663 (2016).
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 2656-2663
-
-
Giordani, V.1
-
84
-
-
84938614160
-
Mechanistic insights for the development of Li-O2 battery materials: Addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities
-
McCloskey, B. D., Burke, C. M., Nichols, J. E., Renfrew, S. E. Mechanistic insights for the development of Li-O2 battery materials: Addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities. Chem. Commun. 51, 12701-12715 (2015).
-
(2015)
Chem. Commun.
, vol.51
, pp. 12701-12715
-
-
McCloskey, B.D.1
Burke, C.M.2
Nichols, J.E.3
Renfrew, S.E.4
-
85
-
-
80755129311
-
On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries
-
McCloskey, B. D., et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J. Am. Chem. Soc. 133, 18038-18041 (2011).
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 18038-18041
-
-
McCloskey, B.D.1
-
86
-
-
84874165067
-
Li-O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory
-
Viswanathan, V., et al. Li-O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory. J. Phys. Chem. Lett. 4, 556-560 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 556-560
-
-
Viswanathan, V.1
-
87
-
-
84872098767
-
The carbon electrode in non-aqueous Li-O2 cells
-
Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z., Bruce, P. G. The carbon electrode in non-aqueous Li-O2 cells. J. Am. Chem. Soc. 135, 494-500 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 494-500
-
-
Ottakam Thotiyl, M.M.1
Freunberger, S.A.2
Peng, Z.3
Bruce, P.G.4
-
88
-
-
84885447962
-
Reactivity of carbon in lithium-oxygen battery positive electrodes
-
Itkis, D. M., et al. Reactivity of carbon in lithium-oxygen battery positive electrodes. Nano Lett. 13, 4697-4701 (2013).
-
(2013)
Nano Lett
, vol.13
, pp. 4697-4701
-
-
Itkis, D.M.1
-
89
-
-
84908609175
-
Adsorption and deposition of Li2O2 on TiC{111} surface
-
Wang, Z., Sun, J., Cheng, Y., Niu, C. Adsorption and deposition of Li2O2 on TiC{111} surface. J. Phys. Chem. Lett. 5, 3919-3923 (2014).
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 3919-3923
-
-
Wang, Z.1
Sun, J.2
Cheng, Y.3
Niu, C.4
-
90
-
-
84928955059
-
A MO2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life
-
Kwak, W.-J., et al. A MO2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano 9, 4129-4137 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 4129-4137
-
-
Kwak, W.-J.1
-
91
-
-
84934968914
-
Nanostructured metal carbides for aprotic Li-O2 batteries: New insights into interfacial reactions and cathode stability
-
Kundu, D., et al. Nanostructured metal carbides for aprotic Li-O2 batteries: New insights into interfacial reactions and cathode stability. J. Phys. Chem. Lett. 6, 2252-2258 (2015).
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 2252-2258
-
-
Kundu, D.1
-
92
-
-
84926500113
-
A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries
-
Kundu, D., Black, R., Berg, E. J., Nazar, L. F. A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries. Energy Environ. Sci. 8, 1292-1298 (2015).
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 1292-1298
-
-
Kundu, D.1
Black, R.2
Berg, E.J.3
Nazar, L.F.4
-
93
-
-
84871970329
-
The role of catalysts and peroxide oxidation in lithium-oxygen batteries
-
Black, R., Lee, J.-H., Adams, B., Mims, C. A., Nazar, L. F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew. Chem. Int. Ed. 52, 392-396 (2013).
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 392-396
-
-
Black, R.1
Lee, J.-H.2
Adams, B.3
Mims, C.A.4
Nazar, L.F.5
-
94
-
-
80055041220
-
A free-standing-type design for cathodes of rechargeable Li-O2 batteries
-
Cui, Y., Wen, Z., Liu, Y. A free-standing-type design for cathodes of rechargeable Li-O2 batteries. Energy Environ. Sci. 4, 4727-4734 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4727-4734
-
-
Cui, Y.1
Wen, Z.2
Liu, Y.3
-
95
-
-
84955572127
-
A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries
-
Lu, J., et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 2383
-
-
Lu, J.1
-
96
-
-
84880081921
-
Stability of polymer binders in Li-O2 batteries
-
Nasybulin, E., et al. Stability of polymer binders in Li-O2 batteries. J. Power Sources 243, 899-907 (2013).
-
(2013)
J. Power Sources
, vol.243
, pp. 899-907
-
-
Nasybulin, E.1
-
97
-
-
84898801617
-
Quantifying the promise of lithium-air batteries for electric vehicles
-
Gallagher, K. G., et al. Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ. Sci. 7, 1555-1563 (2014).
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1555-1563
-
-
Gallagher, K.G.1
-
98
-
-
83455177061
-
Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries
-
Viswanathan, V., et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J. Chem. Phys. 135, 214704 (2011).
-
(2011)
J. Chem. Phys.
, vol.135
, pp. 214704
-
-
Viswanathan, V.1
-
99
-
-
84875476967
-
Effect of carbon surface area on first discharge capacity of Li-O2 cathodes and cycle-life behavior in ether-based electrolytes
-
Meini, S., Piana, M., Beyer, H., Schwämmlein, J., Gasteiger, H. A. Effect of carbon surface area on first discharge capacity of Li-O2 cathodes and cycle-life behavior in ether-based electrolytes. J. Electrochem. Soc. 159, A2135-A2142 (2012).
-
(2012)
J. Electrochem. Soc.
, vol.159
, pp. A2135-A2142
-
-
Meini, S.1
Piana, M.2
Beyer, H.3
Schwämmlein, J.4
Gasteiger, H.A.5
-
100
-
-
84875451454
-
A rechargeable room-temperature sodium superoxide (NaO2) battery
-
Hartmann, P., et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228-232 (2013).
-
(2013)
Nat. Mater.
, vol.12
, pp. 228-232
-
-
Hartmann, P.1
-
101
-
-
84930207019
-
The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries
-
Xia, C., Black, R., Fernandes, R., Adams, B., Nazar, L. F. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat. Chem. 7, 496-501 (2015).
-
(2015)
Nat. Chem.
, vol.7
, pp. 496-501
-
-
Xia, C.1
Black, R.2
Fernandes, R.3
Adams, B.4
Nazar, L.F.5
|