메뉴 건너뛰기




Volumn 15, Issue 8, 2016, Pages 882-888

Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions

Author keywords

[No Author keywords available]

Indexed keywords

CATHODES; CELL DEATH; ELECTRIC BATTERIES; ELECTRODES; ELECTROLYTES; FILM GROWTH; LITHIUM BATTERIES;

EID: 85027922415     PISSN: 14761122     EISSN: 14764660     Source Type: Journal    
DOI: 10.1038/nmat4629     Document Type: Article
Times cited : (432)

References (52)
  • 1
    • 0029769438 scopus 로고    scopus 로고
    • A polymer electrolyte-based rechargeable lithium/oxygen battery
    • Abraham, K. M., Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1-5 (1996).
    • (1996) J. Electrochem. Soc. , vol.143 , pp. 1-5
    • Abraham, K.M.1    Jiang, Z.2
  • 4
    • 84860745752 scopus 로고    scopus 로고
    • Electrocatalysts for nonaqueous lithium-air batteries: Status, challenges, and perspective
    • Shao, Y. et al. Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. ACS Catal. 2, 844-857 (2012).
    • (2012) ACS Catal. , vol.2 , pp. 844-857
    • Shao, Y.1
  • 5
    • 84855328636 scopus 로고    scopus 로고
    • A critical review of Li/air batteries
    • Christensen, J. et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1-R30 (2012).
    • (2012) J. Electrochem. Soc. , vol.159 , pp. R1-R30
    • Christensen, J.1
  • 6
    • 84867292776 scopus 로고    scopus 로고
    • Non-aqueous and hybrid Li-O2 batteries
    • Black, R., Adams, B., Nazar, L. F. Non-aqueous and hybrid Li-O2 batteries. Adv. Energy Mater. 2, 801-815 (2012).
    • (2012) Adv. Energy Mater. , vol.2 , pp. 801-815
    • Black, R.1    Adams, B.2    Nazar, L.F.3
  • 7
    • 84867030978 scopus 로고    scopus 로고
    • Challenges facing lithium batteries and electrical double-layer capacitors
    • Choi, N. S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994-10024 (2012).
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 9994-10024
    • Choi, N.S.1
  • 9
    • 77249091428 scopus 로고    scopus 로고
    • A novel high energy density rechargeable lithium/air battery
    • Zhang, T. et al. A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661-1663 (2010).
    • (2010) Chem. Commun. , vol.46 , pp. 1661-1663
    • Zhang, T.1
  • 10
    • 84916614024 scopus 로고    scopus 로고
    • Nonaqueous Li-air batteries: A status report
    • Luntz, A. C., McCloskey, B. D. Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721-11750 (2014).
    • (2014) Chem. Rev. , vol.114 , pp. 11721-11750
    • Luntz, A.C.1    McCloskey, B.D.2
  • 11
    • 84875642749 scopus 로고    scopus 로고
    • Challenges of non-aqueous Li-O2 batteries: Electrolytes, catalysts, and anodes
    • Li, F., Zhang, T., Zhou, H. Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes. Energy Environ. Sci. 6, 1125-1141 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1125-1141
    • Li, F.1    Zhang, T.2    Zhou, H.3
  • 13
    • 80052186975 scopus 로고    scopus 로고
    • Lithium-ion batteries. A look into the future
    • Scrosati, B., Hassoun, J., Sun, Y.-K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287-3295 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 3287-3295
    • Scrosati, B.1    Hassoun, J.2    Sun, Y.-K.3
  • 14
    • 84929089988 scopus 로고    scopus 로고
    • Lithium-oxygen electrochemistry in non-aqueous solutions
    • Sharon, D. et al. Lithium-oxygen electrochemistry in non-aqueous solutions. Isr. J. Chem. 55, 508-520 (2015).
    • (2015) Isr. J. Chem. , vol.55 , pp. 508-520
    • Sharon, D.1
  • 15
    • 84911463465 scopus 로고    scopus 로고
    • The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries
    • Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nature Chem. 6, 1091-1099 (2014).
    • (2014) Nature Chem. , vol.6 , pp. 1091-1099
    • Johnson, L.1
  • 16
    • 84922801308 scopus 로고    scopus 로고
    • Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries
    • Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries. Nature Chem. 7, 50-56 (2015).
    • (2015) Nature Chem. , vol.7 , pp. 50-56
    • Aetukuri, N.B.1
  • 17
    • 84886054607 scopus 로고    scopus 로고
    • Tunneling and polaron charge transport through Li2O2 in Li-O2 batteries
    • Luntz, A. C. et al. Tunneling and polaron charge transport through Li2O2 in Li-O2 batteries. J. Phys. Chem. Lett. 4, 3494-3499 (2013).
    • (2013) J. Phys. Chem. Lett. , vol.4 , pp. 3494-3499
    • Luntz, A.C.1
  • 18
    • 84872808244 scopus 로고    scopus 로고
    • Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry
    • Hummelshoj, J. S., Luntz, A. C., Norskov, J. K. Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. J. Chem. Phys. 138, 034703 (2013).
    • (2013) J. Chem. Phys. , vol.138 , pp. 034703
    • Hummelshoj, J.S.1    Luntz, A.C.2    Norskov, J.K.3
  • 19
    • 77952416713 scopus 로고    scopus 로고
    • Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery
    • Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J., Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C 114, 9178-9186 (2010).
    • (2010) J. Phys. Chem. C , vol.114 , pp. 9178-9186
    • Laoire, C.O.1    Mukerjee, S.2    Abraham, K.M.3    Plichta, E.J.4    Hendrickson, M.A.5
  • 20
    • 84923341322 scopus 로고    scopus 로고
    • The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells
    • Schwenke, K. U., Metzger, M., Restle, T., Piana, M., Gasteiger, H. A. The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells. J. Electrochem. Soc. 162, A573-A584 (2015).
    • (2015) J. Electrochem. Soc. , vol.162 , pp. A573-A584
    • Schwenke, K.U.1    Metzger, M.2    Restle, T.3    Piana, M.4    Gasteiger, H.A.5
  • 21
    • 84878842247 scopus 로고    scopus 로고
    • Current density dependence of peroxide formation in the Li-O2 battery and its e-ect on charge
    • Adams, B. D. et al. Current density dependence of peroxide formation in the Li-O2 battery and its e-ect on charge. Energy Environ. Sci. 6, 1772-1778 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1772-1778
    • Adams, B.D.1
  • 22
    • 84938150482 scopus 로고    scopus 로고
    • Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity
    • Burke, C. M., Pande, V., Khetan, A., Viswanathan, V., McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc. Natl Acad. Sci. USA 112, 9293-9298 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 9293-9298
    • Burke, C.M.1    Pande, V.2    Khetan, A.3    Viswanathan, V.4    McCloskey, B.D.5
  • 23
    • 85028253391 scopus 로고    scopus 로고
    • The Catalytic Behavior of Lithium Nitrate in Li-O2 Batteries
    • 11-15 October
    • Aurbach, D. et al. The Catalytic Behavior of Lithium Nitrate in Li-O2 Batteries. The 228th ECS Meeting, Phoenix, Arizona, 11-15 October (2015).
    • (2015) The 228th ECS Meeting, Phoenix, Arizona
    • Aurbach, D.1
  • 24
    • 84928382764 scopus 로고    scopus 로고
    • A study of the influence of lithium salt anions on oxygen reduction reactions in Li-air batteries
    • Gunasekara, I., Mukerjee, S., Plichta, E. J., Hendrickson, M. A., Abraham, K. M. A study of the influence of lithium salt anions on oxygen reduction reactions in Li-air batteries. J. Electrochem. Soc. 162, A1055-A1066 (2015).
    • (2015) J. Electrochem. Soc. , vol.162 , pp. A1055-A1066
    • Gunasekara, I.1    Mukerjee, S.2    Plichta, E.J.3    Hendrickson, M.A.4    Abraham, K.M.5
  • 25
    • 84926685925 scopus 로고    scopus 로고
    • Trade-o-s in capacity and rechargeability in nonaqueous Li-O2 batteries: Solution-driven growth versus nucleophilic stability
    • Khetan, A., Luntz, A., Viswanathan, V. Trade-o-s in capacity and rechargeability in nonaqueous Li-O2 batteries: solution-driven growth versus nucleophilic stability. J. Phys. Chem. Lett. 6, 1254-1259 (2015).
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 1254-1259
    • Khetan, A.1    Luntz, A.2    Viswanathan, V.3
  • 26
    • 84884572082 scopus 로고    scopus 로고
    • Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen
    • Sharon, D. et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 4, 3115-3119 (2013).
    • (2013) J. Phys. Chem. Lett. , vol.4 , pp. 3115-3119
    • Sharon, D.1
  • 27
    • 84868459772 scopus 로고    scopus 로고
    • A redox shuttle to facilitate oxygen reduction in the lithium air battery
    • Lacey, M. J., Frith, J. T., Owen, J. R. A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochem. Commun. 26, 74-76 (2013).
    • (2013) Electrochem. Commun. , vol.26 , pp. 74-76
    • Lacey, M.J.1    Frith, J.T.2    Owen, J.R.3
  • 28
    • 84921318216 scopus 로고    scopus 로고
    • A new method to prevent degradation of lithium-oxygen batteries: Reduction of superoxide by viologen
    • Yang, L., Frith, J. T., Garcia-Araez, N., Owen, J. R. A new method to prevent degradation of lithium-oxygen batteries: reduction of superoxide by viologen. Chem. Commun. 51, 1705-1708 (2015).
    • (2015) Chem. Commun. , vol.51 , pp. 1705-1708
    • Yang, L.1    Frith, J.T.2    Garcia-Araez, N.3    Owen, J.R.4
  • 29
    • 84903289353 scopus 로고    scopus 로고
    • A solution-phase bifunctional catalyst for lithium-oxygen batteries
    • Sun, D. et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 136, 8941-8946 (2014).
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 8941-8946
    • Sun, D.1
  • 30
    • 84906270736 scopus 로고    scopus 로고
    • E-cient Li2O2 formation via aprotic oxygen reduction reaction mediated by quinone derivatives
    • Matsuda, S., Hashimoto, K., Nakanishi, S. E-cient Li2O2 formation via aprotic oxygen reduction reaction mediated by quinone derivatives. J. Phys. Chem. C 118, 18397-18400 (2014).
    • (2014) J. Phys. Chem. C , vol.118 , pp. 18397-18400
    • Matsuda, S.1    Hashimoto, K.2    Nakanishi, S.3
  • 32
    • 84873137526 scopus 로고    scopus 로고
    • Electrochemical reduction of quinones in di-erent media: A review
    • Guin, P. S., Das, S., Mandal, P. C. Electrochemical reduction of quinones in di-erent media: a review. Int. J. Electrochem. 2011, 1-22 (2011).
    • (2011) Int. J. Electrochem. , vol.2011 , pp. 1-22
    • Guin, P.S.1    Das, S.2    Mandal, P.C.3
  • 34
    • 84875451454 scopus 로고    scopus 로고
    • A rechargeable room-temperature sodium superoxide (NaO2) battery
    • Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Mater. 12, 228-232 (2013).
    • (2013) Nature Mater. , vol.12 , pp. 228-232
    • Hartmann, P.1
  • 37
    • 79961001509 scopus 로고    scopus 로고
    • The discharge rate capability of rechargeable Li-O2 batteries
    • Lu, Y.-C. et al. The discharge rate capability of rechargeable Li-O2 batteries. Energy Environ. Sci. 4, 2999-3007 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 2999-3007
    • Lu, Y.-C.1
  • 38
    • 84883811127 scopus 로고    scopus 로고
    • Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries
    • McCloskey, B. D. et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 4, 2989-2993 (2013).
    • (2013) J. Phys. Chem. Lett. , vol.4 , pp. 2989-2993
    • McCloskey, B.D.1
  • 39
    • 80052496571 scopus 로고    scopus 로고
    • The lithium-oxygen battery with ether-based electrolytes
    • Freunberger, S. A. et al. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609-8613 (2011).
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 8609-8613
    • Freunberger, S.A.1
  • 41
    • 84920800557 scopus 로고    scopus 로고
    • Towards a stable organic electrolyte for the lithium oxygen battery
    • Adams, B. D. et al. Towards a stable organic electrolyte for the lithium oxygen battery. Adv. Energy Mater. 5, 1400867 (2015).
    • (2015) Adv. Energy Mater. , vol.5 , pp. 1400867
    • Adams, B.D.1
  • 42
    • 84255191069 scopus 로고    scopus 로고
    • Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes
    • Zhang, Z. et al. Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 115, 25535-25542 (2011).
    • (2011) J. Phys. Chem. C , vol.115 , pp. 25535-25542
    • Zhang, Z.1
  • 45
    • 84897990720 scopus 로고    scopus 로고
    • Superior rechargeability and e-ciency of lithium-oxygen batteries: Hierarchical air electrode architecture combined with a soluble catalyst
    • Lim, H. D. et al. Superior rechargeability and e-ciency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926-3931 (2014).
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 3926-3931
    • Lim, H.D.1
  • 46
    • 84881495070 scopus 로고    scopus 로고
    • Cobalt phthalocyanine catalyzed lithium-air batteries
    • Trahan, M. J. et al. Cobalt phthalocyanine catalyzed lithium-air batteries. J. Electrochem. Soc. 160, A1577-A1586 (2013).
    • (2013) J. Electrochem. Soc. , vol.160 , pp. A1577-A1586
    • Trahan, M.J.1
  • 47
    • 84882271269 scopus 로고    scopus 로고
    • Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound
    • Lee, M. et al. Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. Angew. Chem. Int. Ed. 52, 8322-8328 (2013).
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 8322-8328
    • Lee, M.1
  • 48
    • 84862202954 scopus 로고    scopus 로고
    • Rechargeable quasi-solid state lithium battery with organic crystalline cathode
    • Hanyu, Y., Honma, I. Rechargeable quasi-solid state lithium battery with organic crystalline cathode. Sci. Rep. 2, 453 (2012).
    • (2012) Sci. Rep. , vol.2 , pp. 453
    • Hanyu, Y.1    Honma, I.2
  • 49
    • 0002221371 scopus 로고
    • The influence of ion-association on the polarography of quinones in dimethylformamide
    • Peover, M. E., Davis, J. D. The influence of ion-association on the polarography of quinones in dimethylformamide. J. Electroanal. Chem. 6, 46-53 (1963).
    • (1963) J. Electroanal. Chem. , vol.6 , pp. 46-53
    • Peover, M.E.1    Davis, J.D.2
  • 50
    • 79960279780 scopus 로고    scopus 로고
    • Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis
    • Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660, 254-260 (2011).
    • (2011) J. Electroanal. Chem. , vol.660 , pp. 254-260
    • Koper, M.T.M.1
  • 51
    • 84886312896 scopus 로고    scopus 로고
    • A stable cathode for the aprotic Li-O2 battery
    • Ottakam Thotiyl, M. M. et al. A stable cathode for the aprotic Li-O2 battery. Nature Mater. 12, 1050-1056 (2013).
    • (2013) Nature Mater. , vol.12 , pp. 1050-1056
    • Ottakam Thotiyl, M.M.1
  • 52
    • 84879856643 scopus 로고    scopus 로고
    • A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery
    • Hartmann, P. et al. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Phys. Chem. Chem. Phys. 15, 11661-11672 (2013).
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 11661-11672
    • Hartmann, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.