-
1
-
-
84890855226
-
“Green” electronics: biodegradable and biocompatible materials and devices for sustainable future
-
[1] Irimia-Vladu, M., “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43:2 (2014), 588–610.
-
(2014)
Chem. Soc. Rev.
, vol.43
, Issue.2
, pp. 588-610
-
-
Irimia-Vladu, M.1
-
2
-
-
84880886247
-
Nanocellulose electroconductive composites
-
[2] Shi, Z., Phillips, G.O., Yang, G., Nanocellulose electroconductive composites. Nanoscale 5:8 (2013), 3194–3201.
-
(2013)
Nanoscale
, vol.5
, Issue.8
, pp. 3194-3201
-
-
Shi, Z.1
Phillips, G.O.2
Yang, G.3
-
3
-
-
77649152503
-
Cellulosic Nanocomposites: A review
-
[3] Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M., Cellulosic Nanocomposites: A review. Bioresources 3:3 (2008), 929–980.
-
(2008)
Bioresources
, vol.3
, Issue.3
, pp. 929-980
-
-
Hubbe, M.A.1
Rojas, O.J.2
Lucia, L.A.3
Sain, M.4
-
4
-
-
77952422914
-
Microfibrillated cellulose and new nanocomposite materials: a review
-
[4] Siro, I., Plackett, D., Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:3 (2010), 459–494.
-
(2010)
Cellulose
, vol.17
, Issue.3
, pp. 459-494
-
-
Siro, I.1
Plackett, D.2
-
5
-
-
79959459258
-
Cellulose nanomaterials review: structure, properties and nanocomposites
-
[5] Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40:7 (2011), 3941–3994.
-
(2011)
Chem. Soc. Rev.
, vol.40
, Issue.7
, pp. 3941-3994
-
-
Moon, R.J.1
Martini, A.2
Nairn, J.3
Simonsen, J.4
Youngblood, J.5
-
6
-
-
84976600304
-
Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids
-
[6] Chen, L.H., Zhu, J.Y., Baez, C., Kitin, P., Elder, T., Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green. Chem. 18:13 (2016), 3835–3843.
-
(2016)
Green. Chem.
, vol.18
, Issue.13
, pp. 3835-3843
-
-
Chen, L.H.1
Zhu, J.Y.2
Baez, C.3
Kitin, P.4
Elder, T.5
-
7
-
-
84958072117
-
Engineered nanomembranes for smart energy storage devices
-
[7] Wang, X., Chen, Y., Schmidt, O.G., Yan, C., Engineered nanomembranes for smart energy storage devices. Chem. Soc. Rev. 45:5 (2016), 1308–1330.
-
(2016)
Chem. Soc. Rev.
, vol.45
, Issue.5
, pp. 1308-1330
-
-
Wang, X.1
Chen, Y.2
Schmidt, O.G.3
Yan, C.4
-
8
-
-
85017136180
-
-
Textile Institute., Wearable electronics and photonics, Woodhead; CRC Press, Cambridge Boca Raton FL, 2005.
-
[8] X. Tao, Textile Institute., Wearable electronics and photonics, Woodhead; CRC Press, Cambridge Boca Raton FL, 2005.
-
-
-
Tao, X.1
-
9
-
-
84930009786
-
An overview of feasibilities and challenge of conductive cellulose for rechargeable lithium based battery
-
[9] Ummartyotin, S., Manuspiya, H., An overview of feasibilities and challenge of conductive cellulose for rechargeable lithium based battery. Renew. Sustain. Energy Rev. 50 (2015), 204–213.
-
(2015)
Renew. Sustain. Energy Rev.
, vol.50
, pp. 204-213
-
-
Ummartyotin, S.1
Manuspiya, H.2
-
10
-
-
84951570654
-
Bacterial cellulose composites: synthetic strategies and multiple applications in bio-medical and electro-conductive fields
-
[10] Ul-Islam, M., Khan, S., Ullah, M.W., Park, J.K., Bacterial cellulose composites: synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol. J. 10:12 (2015), 1847–1861.
-
(2015)
Biotechnol. J.
, vol.10
, Issue.12
, pp. 1847-1861
-
-
Ul-Islam, M.1
Khan, S.2
Ullah, M.W.3
Park, J.K.4
-
11
-
-
84940369743
-
Paper-based devices for energy applications
-
[11] Sharifi, F., Ghobadian, S., Cavalcanti, F.R., Hashemi, N., Paper-based devices for energy applications. Renew. Sustain. Energy Rev. 52 (2015), 1453–1472.
-
(2015)
Renew. Sustain. Energy Rev.
, vol.52
, pp. 1453-1472
-
-
Sharifi, F.1
Ghobadian, S.2
Cavalcanti, F.R.3
Hashemi, N.4
-
12
-
-
84858953535
-
Energy and environmental nanotechnology in conductive paper and textiles
-
[12] Hu, L., Cui, Y., Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ. Sci. 5:4 (2012), 6423–6435.
-
(2012)
Energy Environ. Sci.
, vol.5
, Issue.4
, pp. 6423-6435
-
-
Hu, L.1
Cui, Y.2
-
13
-
-
84890497039
-
Transparent paper: fabrications, properties, and device applications
-
[13] Zhu, H.L., Fang, Z.Q., Preston, C., Li, Y.Y., Hu, L.B., Transparent paper: fabrications, properties, and device applications. Energy Environ. Sci. 7:1 (2014), 269–287.
-
(2014)
Energy Environ. Sci.
, vol.7
, Issue.1
, pp. 269-287
-
-
Zhu, H.L.1
Fang, Z.Q.2
Preston, C.3
Li, Y.Y.4
Hu, L.B.5
-
14
-
-
84907977157
-
Highly transparent paper with tunable haze for green electronics
-
[14] Fang, Z.Q., Zhu, H.L., Bao, W.Z., Preston, C., Liu, Z., Dai, J.Q., Li, Y.Y., Hu, L.B., Highly transparent paper with tunable haze for green electronics. Energy Environ. Sci. 7:10 (2014), 3313–3319.
-
(2014)
Energy Environ. Sci.
, vol.7
, Issue.10
, pp. 3313-3319
-
-
Fang, Z.Q.1
Zhu, H.L.2
Bao, W.Z.3
Preston, C.4
Liu, Z.5
Dai, J.Q.6
Li, Y.Y.7
Hu, L.B.8
-
15
-
-
84983666599
-
Wood-derived materials for green electronics, biological devices, and energy applications
-
[15] Zhu, H.L., Luo, W., Ciesielski, P.N., Fang, Z.Q., Zhu, J.Y., Henriksson, G., Himmel, M.E., Hu, L.B., Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116:16 (2016), 9305–9374.
-
(2016)
Chem. Rev.
, vol.116
, Issue.16
, pp. 9305-9374
-
-
Zhu, H.L.1
Luo, W.2
Ciesielski, P.N.3
Fang, Z.Q.4
Zhu, J.Y.5
Henriksson, G.6
Himmel, M.E.7
Hu, L.B.8
-
16
-
-
84928340717
-
Review of nanocellulose for sustainable future materials
-
[16] Kim, J.-H., Shim, B.S., Kim, H.S., Lee, Y.-J., Min, S.-K., Jang, D., Abas, Z., Kim, J., Review of nanocellulose for sustainable future materials. Int. J. Precis. Eng. Manuf.-Green Technol. 2:2 (2015), 197–213.
-
(2015)
Int. J. Precis. Eng. Manuf.-Green Technol.
, vol.2
, Issue.2
, pp. 197-213
-
-
Kim, J.-H.1
Shim, B.S.2
Kim, H.S.3
Lee, Y.-J.4
Min, S.-K.5
Jang, D.6
Abas, Z.7
Kim, J.8
-
17
-
-
84867770746
-
Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach
-
[17] Wang, T., Drzal, L.T., Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. Acs Appl. Mater. Interfaces 4:10 (2012), 5079–5085.
-
(2012)
Acs Appl. Mater. Interfaces
, vol.4
, Issue.10
, pp. 5079-5085
-
-
Wang, T.1
Drzal, L.T.2
-
18
-
-
34347329332
-
Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS
-
[18] Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H., Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:6 (2007), 1973–1978.
-
(2007)
Biomacromolecules
, vol.8
, Issue.6
, pp. 1973-1978
-
-
Ifuku, S.1
Nogi, M.2
Abe, K.3
Handa, K.4
Nakatsubo, F.5
Yano, H.6
-
19
-
-
84908430575
-
Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications
-
[19] Wu, X., Tang, J., Duan, Y., Yu, A., Berry, R.M., Tam, K.C., Conductive cellulose nanocrystals with high cycling stability for supercapacitor applications. J. Mater. Chem. A 2:45 (2014), 19268–19274.
-
(2014)
J. Mater. Chem. A
, vol.2
, Issue.45
, pp. 19268-19274
-
-
Wu, X.1
Tang, J.2
Duan, Y.3
Yu, A.4
Berry, R.M.5
Tam, K.C.6
-
20
-
-
84907517904
-
Ultrasound assisted in situ emulsion polymerization for polymer nanocomposite: a review
-
[20] Bhanvase, B.A., Sonawane, S.H., Ultrasound assisted in situ emulsion polymerization for polymer nanocomposite: a review. Chem. Eng. Process 85 (2014), 86–107.
-
(2014)
Chem. Eng. Process
, vol.85
, pp. 86-107
-
-
Bhanvase, B.A.1
Sonawane, S.H.2
-
21
-
-
84942133379
-
Nanostructured conductive polymers for advanced energy storage
-
[21] Shi, Y., Peng, L., Ding, Y., Zhao, Y., Yu, G., Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44:19 (2015), 6684–6696.
-
(2015)
Chem. Soc. Rev.
, vol.44
, Issue.19
, pp. 6684-6696
-
-
Shi, Y.1
Peng, L.2
Ding, Y.3
Zhao, Y.4
Yu, G.5
-
22
-
-
69249120171
-
Conducting polymer nanomaterials: electrosynthesis and applications
-
[22] Li, C., Bai, H., Shi, G., Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38:8 (2009), 2397–2409.
-
(2009)
Chem. Soc. Rev.
, vol.38
, Issue.8
, pp. 2397-2409
-
-
Li, C.1
Bai, H.2
Shi, G.3
-
23
-
-
84901240553
-
Effect of cellulose nanofibers on induced polymerization of aniline and formation of nanostructured conducting composite
-
[23] Yu, H., Chen, P., Chen, W., Liu, Y., Effect of cellulose nanofibers on induced polymerization of aniline and formation of nanostructured conducting composite. Cellulose 21:3 (2014), 1757–1767.
-
(2014)
Cellulose
, vol.21
, Issue.3
, pp. 1757-1767
-
-
Yu, H.1
Chen, P.2
Chen, W.3
Liu, Y.4
-
24
-
-
84939982937
-
In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering
-
[24] Thunberg, J., Kalogeropoulos, T., Kuzmenko, V., Hagg, D., Johannesson, S., Westman, G., Gatenholm, P., In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering. Cellulose 22:3 (2015), 1459–1467.
-
(2015)
Cellulose
, vol.22
, Issue.3
, pp. 1459-1467
-
-
Thunberg, J.1
Kalogeropoulos, T.2
Kuzmenko, V.3
Hagg, D.4
Johannesson, S.5
Westman, G.6
Gatenholm, P.7
-
25
-
-
84938152111
-
Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances
-
[25] Wang, Z., Carlsson, D.O., Tammela, P., Hua, K., Zhang, P., Nyholm, L., Stromme, M., Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. Acs Nano 9:7 (2015), 7563–7571.
-
(2015)
Acs Nano
, vol.9
, Issue.7
, pp. 7563-7571
-
-
Wang, Z.1
Carlsson, D.O.2
Tammela, P.3
Hua, K.4
Zhang, P.5
Nyholm, L.6
Stromme, M.7
-
26
-
-
84926475423
-
Dialysis-free and in situ doping synthesis of polypyrrole@cellulose nanowhiskers nanohybrid for preparation of conductive nanocomposites with enhanced properties
-
[26] Zhang, X., Wu, X., Lu, C., Zhou, Z., Dialysis-free and in situ doping synthesis of polypyrrole@cellulose nanowhiskers nanohybrid for preparation of conductive nanocomposites with enhanced properties. Acs Sustain. Chem. Eng. 3:4 (2015), 675–682.
-
(2015)
Acs Sustain. Chem. Eng.
, vol.3
, Issue.4
, pp. 675-682
-
-
Zhang, X.1
Wu, X.2
Lu, C.3
Zhou, Z.4
-
27
-
-
84904340621
-
Cost-effective and scalable chemical synthesis of conductive cellulose nanocrystals for high-performance supercapacitors
-
[27] Wu, X., Chabot, V.L., Kim, B.K., Yu, A., Berry, R.M., Tam, K.C., Cost-effective and scalable chemical synthesis of conductive cellulose nanocrystals for high-performance supercapacitors. Electrochim. Acta 138 (2014), 139–147.
-
(2014)
Electrochim. Acta
, vol.138
, pp. 139-147
-
-
Wu, X.1
Chabot, V.L.2
Kim, B.K.3
Yu, A.4
Berry, R.M.5
Tam, K.C.6
-
28
-
-
84922295353
-
Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity
-
[28] Tang, L., Han, J., Jiang, Z., Chen, S., Wang, H., Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity. Carbohydr. Polym. 117 (2015), 230–235.
-
(2015)
Carbohydr. Polym.
, vol.117
, pp. 230-235
-
-
Tang, L.1
Han, J.2
Jiang, Z.3
Chen, S.4
Wang, H.5
-
29
-
-
84876540469
-
Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors
-
[29] Wang, H.H., Bian, L.Y., Zhou, P.P., Tang, J., Tang, W.H., Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J. Mater. Chem. A 1:3 (2013), 578–584.
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.3
, pp. 578-584
-
-
Wang, H.H.1
Bian, L.Y.2
Zhou, P.P.3
Tang, J.4
Tang, W.H.5
-
30
-
-
83455205991
-
High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers
-
[30] Razaq, A., Nystrom, G., Stromme, M., Mihranyan, A., Nyholm, L., High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. Plos One, 6(12), 2011.
-
(2011)
Plos One
, vol.6
, Issue.12
-
-
Razaq, A.1
Nystrom, G.2
Stromme, M.3
Mihranyan, A.4
Nyholm, L.5
-
31
-
-
78349263525
-
Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties
-
[31] Sasso, C., Zeno, E., Petit-Conil, M., Chaussy, D., Belgacem, M.N., Tapin-Lingua, S., Beneventi, D., Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol. Mater. Eng. 295:10 (2010), 934–941.
-
(2010)
Macromol. Mater. Eng.
, vol.295
, Issue.10
, pp. 934-941
-
-
Sasso, C.1
Zeno, E.2
Petit-Conil, M.3
Chaussy, D.4
Belgacem, M.N.5
Tapin-Lingua, S.6
Beneventi, D.7
-
32
-
-
84859111066
-
Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes
-
[32] Mihranyan, A., Esmaeili, M., Razaq, A., Alexeichik, D., Lindstrom, T., Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. J. Mater. Sci. 47:10 (2012), 4463–4472.
-
(2012)
J. Mater. Sci.
, vol.47
, Issue.10
, pp. 4463-4472
-
-
Mihranyan, A.1
Esmaeili, M.2
Razaq, A.3
Alexeichik, D.4
Lindstrom, T.5
-
33
-
-
84857640563
-
Characterization of conductive composite films based on TEMPO-oxidized cellulose nanofibers and polypyrrole
-
[33] Jradi, K., Bideau, B., Chabot, B., Daneault, C., Characterization of conductive composite films based on TEMPO-oxidized cellulose nanofibers and polypyrrole. J. Mater. Sci. 47:8 (2012), 3752–3762.
-
(2012)
J. Mater. Sci.
, vol.47
, Issue.8
, pp. 3752-3762
-
-
Jradi, K.1
Bideau, B.2
Chabot, B.3
Daneault, C.4
-
34
-
-
84901369633
-
Preparation and characterization of conductive nanostructured particles based on polyaniline and cellulose nanofibers
-
[34] Casado, U.M., Aranguren, M.I., Marcovich, N.E., Preparation and characterization of conductive nanostructured particles based on polyaniline and cellulose nanofibers. Ultrason Sonochem. 21:5 (2014), 1641–1648.
-
(2014)
Ultrason Sonochem.
, vol.21
, Issue.5
, pp. 1641-1648
-
-
Casado, U.M.1
Aranguren, M.I.2
Marcovich, N.E.3
-
35
-
-
84867809591
-
Conductive nanocomposites based on cellulose nanofibrils coated with polyaniline-DBSA via in situ polymerization
-
[35] Silva, M.J., Sanches, A.O., Malmonge, L.F., Medeiros, E.S., Rosa, M.F., McMahan, C.M., Malmonge, J.A., Conductive nanocomposites based on cellulose nanofibrils coated with polyaniline-DBSA via in situ polymerization. Macromol. Symp. 319:1 (2012), 196–202.
-
(2012)
Macromol. Symp.
, vol.319
, Issue.1
, pp. 196-202
-
-
Silva, M.J.1
Sanches, A.O.2
Malmonge, L.F.3
Medeiros, E.S.4
Rosa, M.F.5
McMahan, C.M.6
Malmonge, J.A.7
-
36
-
-
84874631232
-
New bacterial cellulose/polyaniline nanocomposite film with one conductive side through constrained interfacial polymerization
-
[36] Lin, Z., Guan, Z., Huang, Z., New bacterial cellulose/polyaniline nanocomposite film with one conductive side through constrained interfacial polymerization. Ind. Eng. Chem. Res. 52:8 (2013), 2869–2874.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, Issue.8
, pp. 2869-2874
-
-
Lin, Z.1
Guan, Z.2
Huang, Z.3
-
37
-
-
79959943236
-
Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline
-
[37] Hu, W., Chen, S., Yang, Z., Liu, L., Wang, H., Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J. Phys. Chem. B 115:26 (2011), 8453–8457.
-
(2011)
J. Phys. Chem. B
, vol.115
, Issue.26
, pp. 8453-8457
-
-
Hu, W.1
Chen, S.2
Yang, Z.3
Liu, L.4
Wang, H.5
-
38
-
-
79961209506
-
Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites
-
[38] Marins, J.A., Soares, B.G., Dahmouche, K., Ribeiro, S.J.L., Barud, H., Bonemer, D., Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18:5 (2011), 1285–1294.
-
(2011)
Cellulose
, vol.18
, Issue.5
, pp. 1285-1294
-
-
Marins, J.A.1
Soares, B.G.2
Dahmouche, K.3
Ribeiro, S.J.L.4
Barud, H.5
Bonemer, D.6
-
39
-
-
84865420923
-
Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC)
-
[39] Mueller, D., Mandelli, J.S., Marins, J.A., Soares, B.G., Porto, L.M., Rambo, C.R., Barra, G.M.O., Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:5 (2012), 1645–1654.
-
(2012)
Cellulose
, vol.19
, Issue.5
, pp. 1645-1654
-
-
Mueller, D.1
Mandelli, J.S.2
Marins, J.A.3
Soares, B.G.4
Porto, L.M.5
Rambo, C.R.6
Barra, G.M.O.7
-
40
-
-
84907158341
-
Nano-cladding of natural microcrystalline cellulose with conducting polymer: preparation, characterization, and application in energy storage
-
[40] Yang, C., Zang, L., Qiu, J., Sakai, E., Wu, X., Iwase, Y., Nano-cladding of natural microcrystalline cellulose with conducting polymer: preparation, characterization, and application in energy storage. Rsc Adv. 4:76 (2014), 40345–40351.
-
(2014)
Rsc Adv.
, vol.4
, Issue.76
, pp. 40345-40351
-
-
Yang, C.1
Zang, L.2
Qiu, J.3
Sakai, E.4
Wu, X.5
Iwase, Y.6
-
41
-
-
84902310919
-
Preparation and electrochemical catalytic application of nanocrystalline cellulose doped poly(3,4-ethylenedioxythiophene) conducting polymer nanocomposites
-
[41] Fan, J., Shao, W., Xu, G., Cui, X.T., Luo, X., Preparation and electrochemical catalytic application of nanocrystalline cellulose doped poly(3,4-ethylenedioxythiophene) conducting polymer nanocomposites. Rsc Adv. 4:46 (2014), 24328–24333.
-
(2014)
Rsc Adv.
, vol.4
, Issue.46
, pp. 24328-24333
-
-
Fan, J.1
Shao, W.2
Xu, G.3
Cui, X.T.4
Luo, X.5
-
42
-
-
0034723247
-
Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load
-
[42] Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:5453 (2000), 637–640.
-
(2000)
Science
, vol.287
, Issue.5453
, pp. 637-640
-
-
Yu, M.-F.1
Lourie, O.2
Dyer, M.J.3
Moloni, K.4
Kelly, T.F.5
Ruoff, R.S.6
-
43
-
-
31544438604
-
Thermal conductance of an individual single-wall carbon nanotube above room temperature
-
[43] Pop, E., Mann, D., Wang, Q., Goodson, K., Dai, H., Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6:1 (2006), 96–100.
-
(2006)
Nano Lett.
, vol.6
, Issue.1
, pp. 96-100
-
-
Pop, E.1
Mann, D.2
Wang, Q.3
Goodson, K.4
Dai, H.5
-
44
-
-
47749150628
-
Measurement of the elastic properties and intrinsic strength of monolayer graphene
-
[44] Lee, C., Wei, X., Kysar, J.W., Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:5887 (2008), 385–388.
-
(2008)
Science
, vol.321
, Issue.5887
, pp. 385-388
-
-
Lee, C.1
Wei, X.2
Kysar, J.W.3
Hone, J.4
-
45
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
[45] Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Superior thermal conductivity of single-layer graphene. Nano Lett. 8:3 (2008), 902–907.
-
(2008)
Nano Lett.
, vol.8
, Issue.3
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
Lau, C.N.7
-
46
-
-
84898060389
-
Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics
-
[46] Koga, H., Nogi, M., Komoda, N., Thi Thi, N., Sugahara, T., Suganuma, K., Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. Npg Asia Mater., 6, 2014.
-
(2014)
Npg Asia Mater.
, vol.6
-
-
Koga, H.1
Nogi, M.2
Komoda, N.3
Thi Thi, N.4
Sugahara, T.5
Suganuma, K.6
-
47
-
-
33646354156
-
Electrically conductive bacterial cellulose by incorporation of carbon nanotubes
-
[47] Yoon, S.H., Jin, H.J., Kook, M.C., Pyun, Y.R., Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:4 (2006), 1280–1284.
-
(2006)
Biomacromolecules
, vol.7
, Issue.4
, pp. 1280-1284
-
-
Yoon, S.H.1
Jin, H.J.2
Kook, M.C.3
Pyun, Y.R.4
-
48
-
-
84873110790
-
Transparent and conductive paper from nanocellulose fibers
-
[48] Hu, L., Zheng, G., Yao, J., Liu, N., Weil, B., Eskilsson, M., Karabulut, E., Ruan, Z., Fan, S., Bloking, J.T., McGehee, M.D., Wagberg, L., Cui, Y., Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6:2 (2013), 513–518.
-
(2013)
Energy Environ. Sci.
, vol.6
, Issue.2
, pp. 513-518
-
-
Hu, L.1
Zheng, G.2
Yao, J.3
Liu, N.4
Weil, B.5
Eskilsson, M.6
Karabulut, E.7
Ruan, Z.8
Fan, S.9
Bloking, J.T.10
McGehee, M.D.11
Wagberg, L.12
Cui, Y.13
-
49
-
-
84875980174
-
Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube
-
[49] Koga, H., Saito, T., Kitaoka, T., Nogi, M., Suganuma, K., Isogai, A., Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14:4 (2013), 1160–1165.
-
(2013)
Biomacromolecules
, vol.14
, Issue.4
, pp. 1160-1165
-
-
Koga, H.1
Saito, T.2
Kitaoka, T.3
Nogi, M.4
Suganuma, K.5
Isogai, A.6
-
50
-
-
85027928864
-
A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite
-
[50] Inui, T., Koga, H., Nogi, M., Komoda, N., Suganuma, K., A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv. Mater. 27:6 (2015), 1112–1116.
-
(2015)
Adv. Mater.
, vol.27
, Issue.6
, pp. 1112-1116
-
-
Inui, T.1
Koga, H.2
Nogi, M.3
Komoda, N.4
Suganuma, K.5
-
51
-
-
84877750456
-
Foldable nanopaper antennas for origami electronics
-
[51] Nogi, M., Komoda, N., Otsuka, K., Suganuma, K., Foldable nanopaper antennas for origami electronics. Nanoscale 5:10 (2013), 4395–4399.
-
(2013)
Nanoscale
, vol.5
, Issue.10
, pp. 4395-4399
-
-
Nogi, M.1
Komoda, N.2
Otsuka, K.3
Suganuma, K.4
-
52
-
-
84943754075
-
Chemical modification of cellulose nanofibers for the production of highly thermal resistant and optically transparent nanopaper for paper devices
-
[52] Yagyu, H., Saito, T., Isogai, A., Koga, H., Nogi, M., Chemical modification of cellulose nanofibers for the production of highly thermal resistant and optically transparent nanopaper for paper devices. Acs Appl. Mater. Interfaces 7:39 (2015), 22012–22017.
-
(2015)
Acs Appl. Mater. Interfaces
, vol.7
, Issue.39
, pp. 22012-22017
-
-
Yagyu, H.1
Saito, T.2
Isogai, A.3
Koga, H.4
Nogi, M.5
-
53
-
-
84864121871
-
Highly conductive and stretchable conductors fabricated from bacterial cellulose
-
[53] Liang, H.-W., Guan, Q.-F., Zhu, Z., Song, L.-T., Yao, H.-B., Lei, X., Yu, S.-H., Highly conductive and stretchable conductors fabricated from bacterial cellulose. Npg Asia Mater., 4, 2012.
-
(2012)
Npg Asia Mater.
, vol.4
-
-
Liang, H.-W.1
Guan, Q.-F.2
Zhu, Z.3
Song, L.-T.4
Yao, H.-B.5
Lei, X.6
Yu, S.-H.7
-
54
-
-
80054980116
-
Amphiphilic comb-like polymer for harvest of conductive nano-cellulose
-
[54] Choi, J., Park, S., Cheng, J., Park, M., Hyun, J., Amphiphilic comb-like polymer for harvest of conductive nano-cellulose. Colloid Surf. B 89 (2012), 161–166.
-
(2012)
Colloid Surf. B
, vol.89
, pp. 161-166
-
-
Choi, J.1
Park, S.2
Cheng, J.3
Park, M.4
Hyun, J.5
-
55
-
-
84879485117
-
Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes
-
[55] Zhou, T., Chen, D., Jiu, J., Nge, T.T., Sugahara, T., Nagao, S., Koga, H., Nogi, M., Suganuma, K., Wang, X., Liu, X., Cheng, P., Wang, T., Xiong, D., Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Express Polym. Lett. 7:9 (2013), 756–766.
-
(2013)
Express Polym. Lett.
, vol.7
, Issue.9
, pp. 756-766
-
-
Zhou, T.1
Chen, D.2
Jiu, J.3
Nge, T.T.4
Sugahara, T.5
Nagao, S.6
Koga, H.7
Nogi, M.8
Suganuma, K.9
Wang, X.10
Liu, X.11
Cheng, P.12
Wang, T.13
Xiong, D.14
-
56
-
-
84896929193
-
Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes
-
[56] Hamedi, M.M., Hajian, A., Fall, A.B., Hakansson, K., Salajkova, M., Lundell, F., Wagberg, L., Berglund, L.A., Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. Acs Nano 8:3 (2014), 2467–2476.
-
(2014)
Acs Nano
, vol.8
, Issue.3
, pp. 2467-2476
-
-
Hamedi, M.M.1
Hajian, A.2
Fall, A.B.3
Hakansson, K.4
Salajkova, M.5
Lundell, F.6
Wagberg, L.7
Berglund, L.A.8
-
57
-
-
80054766169
-
A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite
-
[57] Feng, Y.Y., Zhang, X.Q., Shen, Y.T., Yoshino, K., Feng, W., A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym. 87:1 (2012), 644–649.
-
(2012)
Carbohydr. Polym.
, vol.87
, Issue.1
, pp. 644-649
-
-
Feng, Y.Y.1
Zhang, X.Q.2
Shen, Y.T.3
Yoshino, K.4
Feng, W.5
-
58
-
-
84877752702
-
A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films
-
[58] Valentini, L., Cardinali, M., Fortunati, E., Torre, L., Kenny, J.M., A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater. Lett. 105 (2013), 4–7.
-
(2013)
Mater. Lett.
, vol.105
, pp. 4-7
-
-
Valentini, L.1
Cardinali, M.2
Fortunati, E.3
Torre, L.4
Kenny, J.M.5
-
59
-
-
84878400727
-
Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper
-
[59] Gao, K., Shao, Z., Wu, X., Wang, X., Li, J., Zhang, Y., Wang, W., Wang, F., Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr. Polym. 97:1 (2013), 243–251.
-
(2013)
Carbohydr. Polym.
, vol.97
, Issue.1
, pp. 243-251
-
-
Gao, K.1
Shao, Z.2
Wu, X.3
Wang, X.4
Li, J.5
Zhang, Y.6
Wang, W.7
Wang, F.8
-
60
-
-
84937762487
-
Electrically conductive nanocellulose/graphene composites exhibiting improved mechanical properties in high-moisture condition
-
[60] Dang, L.N., Seppala, J., Electrically conductive nanocellulose/graphene composites exhibiting improved mechanical properties in high-moisture condition. Cellulose 22:3 (2015), 1799–1812.
-
(2015)
Cellulose
, vol.22
, Issue.3
, pp. 1799-1812
-
-
Dang, L.N.1
Seppala, J.2
-
61
-
-
84945156652
-
Electrically conductive nano graphite-filled bacterial cellulose composites
-
[61] Kiziltas, E.E., Kiziltas, A., Rhodes, K., Emanetoglu, N.W., Blumentritt, M., Gardner, D.J., Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydr. Polym. 136 (2016), 1144–1151.
-
(2016)
Carbohydr. Polym.
, vol.136
, pp. 1144-1151
-
-
Kiziltas, E.E.1
Kiziltas, A.2
Rhodes, K.3
Emanetoglu, N.W.4
Blumentritt, M.5
Gardner, D.J.6
-
62
-
-
67349089046
-
A low-cure-temperature copper nano ink for highly conductive printed electrodes
-
[62] Lee, B., Kim, Y., Yang, S., Jeong, I., Moon, J., A low-cure-temperature copper nano ink for highly conductive printed electrodes. Curr. Appl. Phys. 9:2 (2009), 157–160.
-
(2009)
Curr. Appl. Phys.
, vol.9
, Issue.2
, pp. 157-160
-
-
Lee, B.1
Kim, Y.2
Yang, S.3
Jeong, I.4
Moon, J.5
-
63
-
-
0031099021
-
Titanium nitride/carbon coatings on graphite fibers
-
[63] Liu, Y., Treadwell, D.R., Kannisto, M.R., Mueller, B.L., Laine, R.M., Titanium nitride/carbon coatings on graphite fibers. J. Am. Ceram. Soc. 80:3 (1997), 705–716.
-
(1997)
J. Am. Ceram. Soc.
, vol.80
, Issue.3
, pp. 705-716
-
-
Liu, Y.1
Treadwell, D.R.2
Kannisto, M.R.3
Mueller, B.L.4
Laine, R.M.5
-
64
-
-
84884257518
-
Electrically conductive lines on cellulose nanopaper for flexible electrical devices
-
[64] Hsieh, M.-C., Kim, C., Nogi, M., Suganuma, K., Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Nanoscale 5:19 (2013), 9289–9295.
-
(2013)
Nanoscale
, vol.5
, Issue.19
, pp. 9289-9295
-
-
Hsieh, M.-C.1
Kim, C.2
Nogi, M.3
Suganuma, K.4
-
65
-
-
84938875706
-
Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs
-
[65] Song, Y., Jiang, Y., Shi, L., Cao, S., Feng, X., Miao, M., Fang, J., Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. Nanoscale 7:32 (2015), 13694–13701.
-
(2015)
Nanoscale
, vol.7
, Issue.32
, pp. 13694-13701
-
-
Song, Y.1
Jiang, Y.2
Shi, L.3
Cao, S.4
Feng, X.5
Miao, M.6
Fang, J.7
-
66
-
-
84881130616
-
Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water- and ethanol-based dispersions
-
[66] Pras, O., Beneventi, D., Chaussy, D., Piette, P., Tapin-Lingua, S., Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water- and ethanol-based dispersions. J. Mater. Sci. 48:20 (2013), 6911–6920.
-
(2013)
J. Mater. Sci.
, vol.48
, Issue.20
, pp. 6911-6920
-
-
Pras, O.1
Beneventi, D.2
Chaussy, D.3
Piette, P.4
Tapin-Lingua, S.5
-
67
-
-
85087294628
-
Mo2C nanoparticles embedded within bacterial cellulose-derived 3D N-doped carbon nanofiber networks for efficient hydrogen evolution
-
[67] Wu, Z.Y., Hu, B.C., Wu, P., Liang, H.W., Yu, Z.L., Lin, Y., Zheng, Y.R., Li, Z.Y., Yu, S.H., Mo2C nanoparticles embedded within bacterial cellulose-derived 3D N-doped carbon nanofiber networks for efficient hydrogen evolution. Npg Asia Mater., 8, 2016.
-
(2016)
Npg Asia Mater.
, vol.8
-
-
Wu, Z.Y.1
Hu, B.C.2
Wu, P.3
Liang, H.W.4
Yu, Z.L.5
Lin, Y.6
Zheng, Y.R.7
Li, Z.Y.8
Yu, S.H.9
-
68
-
-
84870601108
-
Conductive photoswitchable vanadium oxide nanopaper based on bacterial cellulose
-
[68] Gutierrez, J., Fernandes, S.C.M., Mondragon, I., Tercjak, A., Conductive photoswitchable vanadium oxide nanopaper based on bacterial cellulose. Chemsuschem 5:12 (2012), 2323–2327.
-
(2012)
Chemsuschem
, vol.5
, Issue.12
, pp. 2323-2327
-
-
Gutierrez, J.1
Fernandes, S.C.M.2
Mondragon, I.3
Tercjak, A.4
-
69
-
-
84939951139
-
Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper
-
[69] Liu, K., Nasrallah, J., Chen, L., Huang, L., Ni, Y., Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper. Carbohydr. Polym. 126 (2015), 175–178.
-
(2015)
Carbohydr. Polym.
, vol.126
, pp. 175-178
-
-
Liu, K.1
Nasrallah, J.2
Chen, L.3
Huang, L.4
Ni, Y.5
-
70
-
-
84952650307
-
Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline
-
[70] Park, M., Lee, D., Shin, S., Kim, H.-J., Hyun, J., Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline. Carbohydr. Polym. 140 (2016), 43–50.
-
(2016)
Carbohydr. Polym.
, vol.140
, pp. 43-50
-
-
Park, M.1
Lee, D.2
Shin, S.3
Kim, H.-J.4
Hyun, J.5
-
71
-
-
84961320481
-
Structure and effects of gold nanoparticles in bacterial cellulose-polyaniline conductive membranes
-
[71] Faria-Tischer, P.C.S., Costa, C.A.R., Tozetti, I., Dall'Antonia, L.H., Vidotti, M., Structure and effects of gold nanoparticles in bacterial cellulose-polyaniline conductive membranes. Rsc Adv. 6:12 (2016), 9571–9580.
-
(2016)
Rsc Adv.
, vol.6
, Issue.12
, pp. 9571-9580
-
-
Faria-Tischer, P.C.S.1
Costa, C.A.R.2
Tozetti, I.3
Dall'Antonia, L.H.4
Vidotti, M.5
-
72
-
-
85027953579
-
Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder
-
[72] Tang, Y., He, Z., Mosseler, J.A., Ni, Y., Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21:6 (2014), 4569–4581.
-
(2014)
Cellulose
, vol.21
, Issue.6
, pp. 4569-4581
-
-
Tang, Y.1
He, Z.2
Mosseler, J.A.3
Ni, Y.4
-
73
-
-
84954110473
-
Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly
-
[73] Wang, S., Zhang, X., Wu, X., Lu, C., Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter 12:3 (2016), 845–852.
-
(2016)
Soft Matter
, vol.12
, Issue.3
, pp. 845-852
-
-
Wang, S.1
Zhang, X.2
Wu, X.3
Lu, C.4
-
74
-
-
34547248343
-
Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers
-
[74] van den Berg, O., Schroeter, M., Capadona, J.R., Weder, C., Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J. Mater. Chem. 17:26 (2007), 2746–2753.
-
(2007)
J. Mater. Chem.
, vol.17
, Issue.26
, pp. 2746-2753
-
-
van den Berg, O.1
Schroeter, M.2
Capadona, J.R.3
Weder, C.4
-
75
-
-
84915826129
-
Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose
-
[75] Li, Y., Zhu, H., Shen, F., Wan, J., Han, X., Dai, J., Dai, H., Hu, L., Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose. Adv. Funct. Mater. 24:46 (2014), 7366–7372.
-
(2014)
Adv. Funct. Mater.
, vol.24
, Issue.46
, pp. 7366-7372
-
-
Li, Y.1
Zhu, H.2
Shen, F.3
Wan, J.4
Han, X.5
Dai, J.6
Dai, H.7
Hu, L.8
-
76
-
-
84904369803
-
Development of cellulose nanowhisker-polyacrylamide copolymer as a highly functional precursor in the synthesis of nanometal particles for conductive textiles
-
[76] Hebeish, A., Farag, S., Sharaf, S., Shaheen, T.I., Development of cellulose nanowhisker-polyacrylamide copolymer as a highly functional precursor in the synthesis of nanometal particles for conductive textiles. Cellulose 21:4 (2014), 3055–3071.
-
(2014)
Cellulose
, vol.21
, Issue.4
, pp. 3055-3071
-
-
Hebeish, A.1
Farag, S.2
Sharaf, S.3
Shaheen, T.I.4
-
77
-
-
84935028663
-
Conductive natural rubber/carbon black nanocomposites via cellulose nanowhisker templated assembly: tailored hierarchical structure leading to synergistic property enhancements
-
[77] Wu, X., Lu, C., Zhang, X., Zhou, Z., Conductive natural rubber/carbon black nanocomposites via cellulose nanowhisker templated assembly: tailored hierarchical structure leading to synergistic property enhancements. J. Mater. Chem. A 3:25 (2015), 13317–13323.
-
(2015)
J. Mater. Chem. A
, vol.3
, Issue.25
, pp. 13317-13323
-
-
Wu, X.1
Lu, C.2
Zhang, X.3
Zhou, Z.4
-
78
-
-
84874028755
-
Cellulose nanowhiskers templating in conductive polymer nanocomposites reduces electrical percolation threshold 5-fold
-
[78] Tkalya, E., Ghislandi, M., Thielemans, W., van der Schoot, P., de With, G., Koning, C., Cellulose nanowhiskers templating in conductive polymer nanocomposites reduces electrical percolation threshold 5-fold. Acs Macro Lett. 2 (2013), 157–163.
-
(2013)
Acs Macro Lett.
, vol.2
, pp. 157-163
-
-
Tkalya, E.1
Ghislandi, M.2
Thielemans, W.3
van der Schoot, P.4
de With, G.5
Koning, C.6
-
79
-
-
84955105636
-
Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application
-
[79] Wu, X., Lu, C., Han, Y., Zhou, Z., Yuan, G., Zhang, X., Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Compos. Sci. Technol. 124 (2016), 44–51.
-
(2016)
Compos. Sci. Technol.
, vol.124
, pp. 44-51
-
-
Wu, X.1
Lu, C.2
Han, Y.3
Zhou, Z.4
Yuan, G.5
Zhang, X.6
-
80
-
-
79960701451
-
Toward flexible polymer and paper‐based energy storage devices
-
[80] Nyholm, L., Nyström, G., Mihranyan, A., Strømme, M., Toward flexible polymer and paper‐based energy storage devices. Adv. Mater. 23:33 (2011), 3751–3769.
-
(2011)
Adv. Mater.
, vol.23
, Issue.33
, pp. 3751-3769
-
-
Nyholm, L.1
Nyström, G.2
Mihranyan, A.3
Strømme, M.4
-
81
-
-
7544234502
-
-
What Are Batteries, Fuel Cells, and Supercapacitors?(Chem. Rev. 2003, 104, 4245-4269. Published on the Web 09/28/2004.), Chem. Rev., 105 (3) (2005) 1021-1021.
-
[81] M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?(Chem. Rev. 2003, 104, 4245-4269. Published on the Web 09/28/2004.), Chem. Rev., 105 (3) (2005) 1021-1021.
-
-
-
Winter, M.1
Brodd, R.J.2
-
82
-
-
84945319746
-
Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors
-
[82] Liu, Y., Zhou, J., Tang, J., Tang, W., Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors. Chem. Mater. 27:20 (2015), 7034–7041.
-
(2015)
Chem. Mater.
, vol.27
, Issue.20
, pp. 7034-7041
-
-
Liu, Y.1
Zhou, J.2
Tang, J.3
Tang, W.4
-
83
-
-
84921746002
-
Emergence of fiber supercapacitors
-
[83] Yu, D., Qian, Q., Wei, L., Jiang, W., Goh, K., Wei, J., Zhang, J., Chen, Y., Emergence of fiber supercapacitors. Chem. Soc. Rev. 44:3 (2015), 647–662.
-
(2015)
Chem. Soc. Rev.
, vol.44
, Issue.3
, pp. 647-662
-
-
Yu, D.1
Qian, Q.2
Wei, L.3
Jiang, W.4
Goh, K.5
Wei, J.6
Zhang, J.7
Chen, Y.8
-
84
-
-
82955199345
-
A review of electrode materials for electrochemical supercapacitors
-
[84] Wang, G., Zhang, L., Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41:2 (2012), 797–828.
-
(2012)
Chem. Soc. Rev.
, vol.41
, Issue.2
, pp. 797-828
-
-
Wang, G.1
Zhang, L.2
Zhang, J.3
-
85
-
-
54949139227
-
Materials for electrochemical capacitors
-
[85] Simon, P., Gogotsi, Y., Materials for electrochemical capacitors. Nat. Mater. 7:11 (2008), 845–854.
-
(2008)
Nat. Mater.
, vol.7
, Issue.11
, pp. 845-854
-
-
Simon, P.1
Gogotsi, Y.2
-
86
-
-
84903893188
-
Flexible solid-state electrochemical supercapacitors
-
[86] Yang, P., Mai, W., Flexible solid-state electrochemical supercapacitors. Nano Energy 8 (2014), 274–290.
-
(2014)
Nano Energy
, vol.8
, pp. 274-290
-
-
Yang, P.1
Mai, W.2
-
87
-
-
84937439726
-
Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage
-
[87] Zhang, Y.-Z., Wang, Y., Cheng, T., Lai, W.-Y., Pang, H., Huang, W., Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem. Soc. Rev. 44:15 (2015), 5181–5199.
-
(2015)
Chem. Soc. Rev.
, vol.44
, Issue.15
, pp. 5181-5199
-
-
Zhang, Y.-Z.1
Wang, Y.2
Cheng, T.3
Lai, W.-Y.4
Pang, H.5
Huang, W.6
-
88
-
-
40949121029
-
Relation between the ion size and pore size for an electric double-layer capacitor
-
[88] Largeot, C., Portet, C., Chmiola, J., Taberna, P.-L., Gogotsi, Y., Simon, P., Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130:9 (2008), 2730–2731.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, Issue.9
, pp. 2730-2731
-
-
Largeot, C.1
Portet, C.2
Chmiola, J.3
Taberna, P.-L.4
Gogotsi, Y.5
Simon, P.6
-
89
-
-
77953291375
-
Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application
-
[89] Kandalkar, S.G., Dhawale, D.S., Kim, C.-K., Lokhande, C.D., Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth. Met. 160:11–12 (2010), 1299–1302.
-
(2010)
Synth. Met.
, vol.160
, Issue.11-12
, pp. 1299-1302
-
-
Kandalkar, S.G.1
Dhawale, D.S.2
Kim, C.-K.3
Lokhande, C.D.4
-
90
-
-
84876940746
-
Solid-state, flexible, high strength paper-based supercapacitors
-
[90] Zhang, X., Lin, Z., Chen, B., Sharma, S., Wong, C.-p., Zhang, W., Deng, Y., Solid-state, flexible, high strength paper-based supercapacitors. J. Mater. Chem. A 1:19 (2013), 5835–5839.
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.19
, pp. 5835-5839
-
-
Zhang, X.1
Lin, Z.2
Chen, B.3
Sharma, S.4
Wong, C.-P.5
Zhang, W.6
Deng, Y.7
-
91
-
-
84863115778
-
Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel
-
[91] Cai, J., Liu, S.L., Feng, J., Kimura, S., Wada, M., Kuga, S., Zhang, L.N., Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem.-Int. Ed. 51:9 (2012), 2076–2079.
-
(2012)
Angew. Chem.-Int. Ed.
, vol.51
, Issue.9
, pp. 2076-2079
-
-
Cai, J.1
Liu, S.L.2
Feng, J.3
Kimura, S.4
Wada, M.5
Kuga, S.6
Zhang, L.N.7
-
92
-
-
77956524317
-
Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures
-
[92] Sehaqui, H., Liu, A.D., Zhou, Q., Berglund, L.A., Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:9 (2010), 2195–2198.
-
(2010)
Biomacromolecules
, vol.11
, Issue.9
, pp. 2195-2198
-
-
Sehaqui, H.1
Liu, A.D.2
Zhou, Q.3
Berglund, L.A.4
-
93
-
-
84864212720
-
All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels
-
[93] Kang, Y.J., Chun, S.-J., Lee, S.-S., Kim, B.-Y., Kim, J.H., Chung, H., Lee, S.-Y., Kim, W., All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6:7 (2012), 6400–6406.
-
(2012)
ACS Nano
, vol.6
, Issue.7
, pp. 6400-6406
-
-
Kang, Y.J.1
Chun, S.-J.2
Lee, S.-S.3
Kim, B.-Y.4
Kim, J.H.5
Chung, H.6
Lee, S.-Y.7
Kim, W.8
-
94
-
-
84921683275
-
Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors
-
[94] Liu, Y., Zhou, J., Zhu, E., Tang, J., Liu, X., Tang, W., Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors. J. Mater. Chem. C 3:5 (2015), 1011–1017.
-
(2015)
J. Mater. Chem. C
, vol.3
, Issue.5
, pp. 1011-1017
-
-
Liu, Y.1
Zhou, J.2
Zhu, E.3
Tang, J.4
Liu, X.5
Tang, W.6
-
95
-
-
84875865206
-
Cellulose nanofiber-graphene all solid-state flexible supercapacitors
-
[95] Gao, K., Shao, Z., Li, J., Wang, X., Peng, X., Wang, W., Wang, F., Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J. Mater. Chem. A 1:1 (2013), 63–67.
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.1
, pp. 63-67
-
-
Gao, K.1
Shao, Z.2
Li, J.3
Wang, X.4
Peng, X.5
Wang, W.6
Wang, F.7
-
96
-
-
84902996046
-
Flexible solid-state supercapacitors: design, fabrication and applications
-
[96] Lu, X., Yu, M., Wang, G., Tong, Y., Li, Y., Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7:7 (2014), 2160–2181.
-
(2014)
Energy Environ. Sci.
, vol.7
, Issue.7
, pp. 2160-2181
-
-
Lu, X.1
Yu, M.2
Wang, G.3
Tong, Y.4
Li, Y.5
-
97
-
-
84907968950
-
Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications
-
[97] Wang, Z., Tammela, P., Zhang, P., Huo, J., Ericson, F., Strømme, M., Nyholm, L., Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications. Nanoscale 6:21 (2014), 13068–13075.
-
(2014)
Nanoscale
, vol.6
, Issue.21
, pp. 13068-13075
-
-
Wang, Z.1
Tammela, P.2
Zhang, P.3
Huo, J.4
Ericson, F.5
Strømme, M.6
Nyholm, L.7
-
98
-
-
84945497140
-
Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials
-
[98] Yang, X., Shi, K., Zhitomirsky, I., Cranston, E.D., Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 27:40 (2015), 6104–6109.
-
(2015)
Adv. Mater.
, vol.27
, Issue.40
, pp. 6104-6109
-
-
Yang, X.1
Shi, K.2
Zhitomirsky, I.3
Cranston, E.D.4
-
99
-
-
84876540469
-
Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors
-
[99] Wang, H., Bian, L., Zhou, P., Tang, J., Tang, W., Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J. Mater. Chem. A 1:3 (2013), 578–584.
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.3
, pp. 578-584
-
-
Wang, H.1
Bian, L.2
Zhou, P.3
Tang, J.4
Tang, W.5
-
100
-
-
84899814734
-
Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole–nanocellulose electrodes
-
[100] Wang, Z., Tammela, P., Zhang, P., Strømme, M., Nyholm, L., Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole–nanocellulose electrodes. J. Mater. Chem. A 2:21 (2014), 7711–7716.
-
(2014)
J. Mater. Chem. A
, vol.2
, Issue.21
, pp. 7711-7716
-
-
Wang, Z.1
Tammela, P.2
Zhang, P.3
Strømme, M.4
Nyholm, L.5
-
101
-
-
77950219237
-
A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood
-
[101] Nyström, G., Mihranyan, A., Razaq, A., Lindström, T., Nyholm, L., Strømme, M., A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J. Phys. Chem. B 114:12 (2010), 4178–4182.
-
(2010)
J. Phys. Chem. B
, vol.114
, Issue.12
, pp. 4178-4182
-
-
Nyström, G.1
Mihranyan, A.2
Razaq, A.3
Lindström, T.4
Nyholm, L.5
Strømme, M.6
-
102
-
-
84863314995
-
Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes
-
[102] Wang, H., Zhu, E., Yang, J., Zhou, P., Sun, D., Tang, W., Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J. Phys. Chem. C 116:24 (2012), 13013–13019.
-
(2012)
J. Phys. Chem. C
, vol.116
, Issue.24
, pp. 13013-13019
-
-
Wang, H.1
Zhu, E.2
Yang, J.3
Zhou, P.4
Sun, D.5
Tang, W.6
-
103
-
-
84908099028
-
Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices
-
[103] Li, S., Huang, D., Yang, J., Zhang, B., Zhang, X., Yang, G., Wang, M., Shen, Y., Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9 (2014), 309–317.
-
(2014)
Nano Energy
, vol.9
, pp. 309-317
-
-
Li, S.1
Huang, D.2
Yang, J.3
Zhang, B.4
Zhang, X.5
Yang, G.6
Wang, M.7
Shen, Y.8
-
104
-
-
85017141013
-
-
Physicists show electrons can travel more than 100 times faster in graphene, Online]. Available: 〈
-
[104] L. Tune, Physicists show electrons can travel more than 100 times faster in graphene, Online]. Available: 〈http://newsdesk.umd.edu/scitech/release.cfm〉, 2008.
-
(2008)
-
-
Tune, L.1
-
105
-
-
0004173989
-
Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications (Materials Science and ProcessTechnology)
-
William Andrew Inc
-
[105] Pierson, H.O., Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications (Materials Science and ProcessTechnology). 1993, William Andrew Inc.
-
(1993)
-
-
Pierson, H.O.1
-
106
-
-
84863680801
-
Paper‐based energy‐storage devices comprising carbon fiber‐reinforced polypyrrole‐Cladophora nanocellulose composite electrodes
-
[106] Razaq, A., Nyholm, L., Sjödin, M., Strømme, M., Mihranyan, A., Paper‐based energy‐storage devices comprising carbon fiber‐reinforced polypyrrole‐Cladophora nanocellulose composite electrodes. Adv. Energy Mater. 2:4 (2012), 445–454.
-
(2012)
Adv. Energy Mater.
, vol.2
, Issue.4
, pp. 445-454
-
-
Razaq, A.1
Nyholm, L.2
Sjödin, M.3
Strømme, M.4
Mihranyan, A.5
-
107
-
-
84945497140
-
Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials
-
[107] Yang, X., Shi, K.Y., Zhitomirsky, I., Cranston, E.D., Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv. Mater. 27:40 (2015), 6104–6109.
-
(2015)
Adv. Mater.
, vol.27
, Issue.40
, pp. 6104-6109
-
-
Yang, X.1
Shi, K.Y.2
Zhitomirsky, I.3
Cranston, E.D.4
-
108
-
-
84930666441
-
Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries
-
[108] Nystrom, G., Marais, A., Karabulut, E., Wagberg, L., Cui, Y., Hamedi, M.M., Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nat. Commun., 6, 2015.
-
(2015)
Nat. Commun.
, vol.6
-
-
Nystrom, G.1
Marais, A.2
Karabulut, E.3
Wagberg, L.4
Cui, Y.5
Hamedi, M.M.6
-
109
-
-
84882430040
-
Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors
-
[109] Zhang, X.D., Lin, Z.Y., Chen, B., Zhang, W., Sharma, S., Gu, W.T., Deng, Y.L., Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. J. Power Sources 246 (2014), 283–289.
-
(2014)
J. Power Sources
, vol.246
, pp. 283-289
-
-
Zhang, X.D.1
Lin, Z.Y.2
Chen, B.3
Zhang, W.4
Sharma, S.5
Gu, W.T.6
Deng, Y.L.7
-
110
-
-
84881606311
-
Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors
-
[110] Gao, K.Z., Shao, Z.Q., Wang, X., Zhang, Y.H., Wang, W.J., Wang, F.J., Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. Rsc Adv. 3:35 (2013), 15058–15064.
-
(2013)
Rsc Adv.
, vol.3
, Issue.35
, pp. 15058-15064
-
-
Gao, K.Z.1
Shao, Z.Q.2
Wang, X.3
Zhang, Y.H.4
Wang, W.J.5
Wang, F.J.6
-
111
-
-
84862169662
-
Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water
-
[111] Zhang, W., Zhang, Y., Lu, C.H., Deng, Y.L., Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J. Mater. Chem. 22:23 (2012), 11642–11650.
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.23
, pp. 11642-11650
-
-
Zhang, W.1
Zhang, Y.2
Lu, C.H.3
Deng, Y.L.4
-
112
-
-
56049097919
-
Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities
-
[112] Paakko, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindstrom, T., Berglund, L.A., Ikkala, O., Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:12 (2008), 2492–2499.
-
(2008)
Soft Matter
, vol.4
, Issue.12
, pp. 2492-2499
-
-
Paakko, M.1
Vapaavuori, J.2
Silvennoinen, R.3
Kosonen, H.4
Ankerfors, M.5
Lindstrom, T.6
Berglund, L.A.7
Ikkala, O.8
-
113
-
-
84887500199
-
Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond
-
[113] Hamedi, M., Karabulut, E., Marais, A., Herland, A., Nyström, G., Wågberg, L., Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew. Chem. Int. Ed. 52:46 (2013), 12038–12042.
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, Issue.46
, pp. 12038-12042
-
-
Hamedi, M.1
Karabulut, E.2
Marais, A.3
Herland, A.4
Nyström, G.5
Wågberg, L.6
-
114
-
-
84858650073
-
Carbon‐based electrochemical capacitors
-
[114] Ghosh, A., Lee, Y.H., Carbon‐based electrochemical capacitors. ChemSusChem 5:3 (2012), 480–499.
-
(2012)
ChemSusChem
, vol.5
, Issue.3
, pp. 480-499
-
-
Ghosh, A.1
Lee, Y.H.2
-
115
-
-
84859847002
-
Carbon nanomaterials for advanced energy conversion and storage
-
[115] Dai, L., Chang, D.W., Baek, J.B., Lu, W., Carbon nanomaterials for advanced energy conversion and storage. Small 8:8 (2012), 1130–1166.
-
(2012)
Small
, vol.8
, Issue.8
, pp. 1130-1166
-
-
Dai, L.1
Chang, D.W.2
Baek, J.B.3
Lu, W.4
-
116
-
-
84865595388
-
Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors
-
[116] Chen, L.-F., Zhang, X.-D., Liang, H.-W., Kong, M., Guan, Q.-F., Chen, P., Wu, Z.-Y., Yu, S.-H., Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6:8 (2012), 7092–7102.
-
(2012)
ACS Nano
, vol.6
, Issue.8
, pp. 7092-7102
-
-
Chen, L.-F.1
Zhang, X.-D.2
Liang, H.-W.3
Kong, M.4
Guan, Q.-F.5
Chen, P.6
Wu, Z.-Y.7
Yu, S.-H.8
-
117
-
-
84937037739
-
High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers
-
[117] Cai, J., Niu, H., Li, Z., Du, Y., Cizek, P., Xie, Z., Xiong, H., Lin, T., High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS Appl. Mater. Interfaces 7:27 (2015), 14946–14953.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, Issue.27
, pp. 14946-14953
-
-
Cai, J.1
Niu, H.2
Li, Z.3
Du, Y.4
Cizek, P.5
Xie, Z.6
Xiong, H.7
Lin, T.8
-
118
-
-
84907536865
-
Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode
-
[118] Hao, P., Zhao, Z., Tian, J., Li, H., Sang, Y., Yu, G., Cai, H., Liu, H., Wong, C., Umar, A., Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:20 (2014), 12120–12129.
-
(2014)
Nanoscale
, vol.6
, Issue.20
, pp. 12120-12129
-
-
Hao, P.1
Zhao, Z.2
Tian, J.3
Li, H.4
Sang, Y.5
Yu, G.6
Cai, H.7
Liu, H.8
Wong, C.9
Umar, A.10
-
119
-
-
84997610785
-
Hierarchical cellulose-derived CNF/CNT composites for electrostatic energy storage
-
[119] Kuzmenko, V., Saleem, A., Staaf, H., Haque, M., Bhaskar, A., Flygare, M., Svensson, K., Desmaris, V., Enoksson, P., Hierarchical cellulose-derived CNF/CNT composites for electrostatic energy storage. J. Micromech. Microeng., 26(12), 2016, 124001.
-
(2016)
J. Micromech. Microeng.
, vol.26
, Issue.12
, pp. 124001
-
-
Kuzmenko, V.1
Saleem, A.2
Staaf, H.3
Haque, M.4
Bhaskar, A.5
Flygare, M.6
Svensson, K.7
Desmaris, V.8
Enoksson, P.9
-
120
-
-
84885595699
-
Ultralight, flexible, and fire‐resistant carbon nanofiber aerogels from bacterial cellulose
-
[120] Wu, Z.Y., Li, C., Liang, H.W., Chen, J.F., Yu, S.H., Ultralight, flexible, and fire‐resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. 125:10 (2013), 2997–3001.
-
(2013)
Angew. Chem.
, vol.125
, Issue.10
, pp. 2997-3001
-
-
Wu, Z.Y.1
Li, C.2
Liang, H.W.3
Chen, J.F.4
Yu, S.H.5
-
121
-
-
84886789713
-
Supercapacitance from cellulose and carbon nanotube nanocomposite fibers
-
[121] Deng, L., Young, R.J., Kinloch, I.A., Abdelkader, A.M., Holmes, S.M., De Haro-Del Rio, D.A., Eichhorn, S.J., Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Interfaces 5:20 (2013), 9983–9990.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, Issue.20
, pp. 9983-9990
-
-
Deng, L.1
Young, R.J.2
Kinloch, I.A.3
Abdelkader, A.M.4
Holmes, S.M.5
De Haro-Del Rio, D.A.6
Eichhorn, S.J.7
-
122
-
-
84892783161
-
Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate
-
[122] Kuzmenko, V., Naboka, O., Gatenholm, P., Enoksson, P., Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon 67 (2014), 694–703.
-
(2014)
Carbon
, vol.67
, pp. 694-703
-
-
Kuzmenko, V.1
Naboka, O.2
Gatenholm, P.3
Enoksson, P.4
-
123
-
-
84912536033
-
Catalytic graphitization of electrospun cellulose nanofibres using silica nanoparticles
-
[123] Deng, L., Lewandowska, A.E., Young, R.J., Zhang, G., Sun, R., Eichhorn, S.J., Catalytic graphitization of electrospun cellulose nanofibres using silica nanoparticles. React. Funct. Polym. 85 (2014), 235–238.
-
(2014)
React. Funct. Polym.
, vol.85
, pp. 235-238
-
-
Deng, L.1
Lewandowska, A.E.2
Young, R.J.3
Zhang, G.4
Sun, R.5
Eichhorn, S.J.6
-
124
-
-
84861101879
-
Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor
-
[124] Kong, K., Deng, L., Kinloch, I.A., Young, R.J., Eichhorn, S.J., Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor. J. Mater. Sci. 47:14 (2012), 5402–5410.
-
(2012)
J. Mater. Sci.
, vol.47
, Issue.14
, pp. 5402-5410
-
-
Kong, K.1
Deng, L.2
Kinloch, I.A.3
Young, R.J.4
Eichhorn, S.J.5
-
125
-
-
84859099803
-
Carbon fibres from cellulosic precursors: a review
-
[125] Dumanlı, A.G., Windle, A.H., Carbon fibres from cellulosic precursors: a review. J. Mater. Sci. 47:10 (2012), 4236–4250.
-
(2012)
J. Mater. Sci.
, vol.47
, Issue.10
, pp. 4236-4250
-
-
Dumanlı, A.G.1
Windle, A.H.2
-
126
-
-
84971254875
-
High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers
-
[126] Cai, J., Niu, H., Wang, H., Shao, H., Fang, J., He, J., Xiong, H., Ma, C., Lin, T., High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers. J. Power Sources 324 (2016), 302–308.
-
(2016)
J. Power Sources
, vol.324
, pp. 302-308
-
-
Cai, J.1
Niu, H.2
Wang, H.3
Shao, H.4
Fang, J.5
He, J.6
Xiong, H.7
Ma, C.8
Lin, T.9
-
127
-
-
84960158490
-
Hierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage
-
[127] V. Kuzmenko, A. Saleem, A. Bhaskar, H. Staaf, V. Desmaris, P. Enoksson, Hierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage, in: Journal of Physics: Conference Series, IOP Publishing, pp. 012062, 2015.
-
(2015)
Journal of Physics: Conference Series, IOP Publishing, pp. 012062
-
-
Kuzmenko, V.1
Saleem, A.2
Bhaskar, A.3
Staaf, H.4
Desmaris, V.5
Enoksson, P.6
-
128
-
-
84983481461
-
Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors
-
[128] Kuzmenko, V., Naboka, O., Haque, M., Staaf, H., Göransson, G., Gatenholm, P., Enoksson, P., Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors. Energy 90 (2015), 1490–1496.
-
(2015)
Energy
, vol.90
, pp. 1490-1496
-
-
Kuzmenko, V.1
Naboka, O.2
Haque, M.3
Staaf, H.4
Göransson, G.5
Gatenholm, P.6
Enoksson, P.7
-
129
-
-
84925783994
-
Hierarchical Porous Graphene Carbon-Based Supercapacitors
-
[129] Huang, J., Wang, J., Wang, C., Zhang, H., Lu, C., Wang, J., Hierarchical Porous Graphene Carbon-Based Supercapacitors. Chem. Mater. 27:6 (2015), 2107–2113.
-
(2015)
Chem. Mater.
, vol.27
, Issue.6
, pp. 2107-2113
-
-
Huang, J.1
Wang, J.2
Wang, C.3
Zhang, H.4
Lu, C.5
Wang, J.6
-
130
-
-
84903515616
-
Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose
-
[130] Long, C., Qi, D., Wei, T., Yan, J., Jiang, L., Fan, Z., Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 24:25 (2014), 3953–3961.
-
(2014)
Adv. Funct. Mater.
, vol.24
, Issue.25
, pp. 3953-3961
-
-
Long, C.1
Qi, D.2
Wei, T.3
Yan, J.4
Jiang, L.5
Fan, Z.6
-
131
-
-
27744542187
-
A general strategy for nanocrystal synthesis
-
[131] Wang, X., Zhuang, J., Peng, Q., Li, Y., A general strategy for nanocrystal synthesis. Nature 437:7055 (2005), 121–124.
-
(2005)
Nature
, vol.437
, Issue.7055
, pp. 121-124
-
-
Wang, X.1
Zhuang, J.2
Peng, Q.3
Li, Y.4
-
132
-
-
0342819025
-
Helical microtubules of graphitic carbon
-
[132] Iijima, S., Helical microtubules of graphitic carbon. Nature 354:6348 (1991), 56–58.
-
(1991)
Nature
, vol.354
, Issue.6348
, pp. 56-58
-
-
Iijima, S.1
-
133
-
-
84880788580
-
Two‐step boron and nitrogen doping in graphene for enhanced synergistic catalysis
-
[133] Zheng, Y., Jiao, Y., Ge, L., Jaroniec, M., Qiao, S.Z., Two‐step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. 125:11 (2013), 3192–3198.
-
(2013)
Angew. Chem.
, vol.125
, Issue.11
, pp. 3192-3198
-
-
Zheng, Y.1
Jiao, Y.2
Ge, L.3
Jaroniec, M.4
Qiao, S.Z.5
-
134
-
-
84874826539
-
Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes
-
[134] Jana, D., Sun, C.-L., Chen, L.-C., Chen, K.-H., Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Prog. Mater. Sci. 58:5 (2013), 565–635.
-
(2013)
Prog. Mater. Sci.
, vol.58
, Issue.5
, pp. 565-635
-
-
Jana, D.1
Sun, C.-L.2
Chen, L.-C.3
Chen, K.-H.4
-
135
-
-
84875913457
-
Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors
-
[135] Xu, B., Zheng, D., Jia, M., Cao, G., Yang, Y., Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim. Acta 98 (2013), 176–182.
-
(2013)
Electrochim. Acta
, vol.98
, pp. 176-182
-
-
Xu, B.1
Zheng, D.2
Jia, M.3
Cao, G.4
Yang, Y.5
-
136
-
-
84896482918
-
Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors
-
[136] Han, J., Xu, G., Ding, B., Pan, J., Dou, H., MacFarlane, D.R., Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A 2:15 (2014), 5352–5357.
-
(2014)
J. Mater. Chem. A
, vol.2
, Issue.15
, pp. 5352-5357
-
-
Han, J.1
Xu, G.2
Ding, B.3
Pan, J.4
Dou, H.5
MacFarlane, D.R.6
-
137
-
-
84878636713
-
Nitrogen‐enriched carbons from alkali salts with high Coulombic efficiency for energy storage applications
-
[137] Guo, B., Sun, X.G., Veith, G.M., Bi, Z., Mahurin, S.M., Liao, C., Bridges, C., Paranthaman, M.P., Dai, S., Nitrogen‐enriched carbons from alkali salts with high Coulombic efficiency for energy storage applications. Adv. Energy Mater. 3:6 (2013), 708–712.
-
(2013)
Adv. Energy Mater.
, vol.3
, Issue.6
, pp. 708-712
-
-
Guo, B.1
Sun, X.G.2
Veith, G.M.3
Bi, Z.4
Mahurin, S.M.5
Liao, C.6
Bridges, C.7
Paranthaman, M.P.8
Dai, S.9
-
138
-
-
84958965562
-
Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction
-
[138] Lai, F., Miao, Y.-E., Huang, Y., Zhang, Y., Liu, T., Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction. Acs Appl. Mater. Interfaces 8:6 (2016), 3558–3566.
-
(2016)
Acs Appl. Mater. Interfaces
, vol.8
, Issue.6
, pp. 3558-3566
-
-
Lai, F.1
Miao, Y.-E.2
Huang, Y.3
Zhang, Y.4
Liu, T.5
-
139
-
-
84872309768
-
Nitrogen‐doped porous carbon nanosheets as low‐cost, high‐performance anode material for sodium‐ion batteries
-
[139] Wang, Hg, Wu, Z., Meng, Fl, Ma, Dl, Huang, Xl, Wang, Lm, Zhang, Xb, Nitrogen‐doped porous carbon nanosheets as low‐cost, high‐performance anode material for sodium‐ion batteries. ChemSusChem 6:1 (2013), 56–60.
-
(2013)
ChemSusChem
, vol.6
, Issue.1
, pp. 56-60
-
-
Wang, H.1
Wu, Z.2
Meng, F.3
Ma, D.4
Huang, X.5
Wang, L.6
Zhang, X.7
-
140
-
-
84881084011
-
Nitrogen-doped porous carbon prepared from urea formaldehyde resins by template carbonization method for supercapacitors
-
[140] Chen, X.Y., Chen, C., Zhang, Z.J., Xie, D.H., Deng, X., Nitrogen-doped porous carbon prepared from urea formaldehyde resins by template carbonization method for supercapacitors. Ind. Eng. Chem. Res. 52:30 (2013), 10181–10188.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, Issue.30
, pp. 10181-10188
-
-
Chen, X.Y.1
Chen, C.2
Zhang, Z.J.3
Xie, D.H.4
Deng, X.5
-
141
-
-
84883829151
-
Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density
-
[141] Chen, L.-F., Huang, Z.-H., Liang, H.-W., Guan, Q.-F., Yu, S.-H., Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv. Mater. 25:34 (2013), 4746–4752.
-
(2013)
Adv. Mater.
, vol.25
, Issue.34
, pp. 4746-4752
-
-
Chen, L.-F.1
Huang, Z.-H.2
Liang, H.-W.3
Guan, Q.-F.4
Yu, S.-H.5
-
142
-
-
84906568986
-
Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors
-
[142] Chen, L.-F., Huang, Z.-H., Liang, H.-W., Gao, H.-L., Yu, S.-H., Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Funct. Mater. 24:32 (2014), 5104–5111.
-
(2014)
Adv. Funct. Mater.
, vol.24
, Issue.32
, pp. 5104-5111
-
-
Chen, L.-F.1
Huang, Z.-H.2
Liang, H.-W.3
Gao, H.-L.4
Yu, S.-H.5
-
143
-
-
80052230656
-
Challenges in the development of advanced Li-ion batteries: a review
-
[143] Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4:9 (2011), 3243–3262.
-
(2011)
Energy Environ. Sci.
, vol.4
, Issue.9
, pp. 3243-3262
-
-
Etacheri, V.1
Marom, R.2
Elazari, R.3
Salitra, G.4
Aurbach, D.5
-
144
-
-
84881012540
-
Cellulose-based Li-ion batteries: a review
-
[144] Jabbour, L., Bongiovanni, R., Chaussy, D., Gerbaldi, C., Beneventi, D., Cellulose-based Li-ion batteries: a review. Cellulose 20:4 (2013), 1523–1545.
-
(2013)
Cellulose
, vol.20
, Issue.4
, pp. 1523-1545
-
-
Jabbour, L.1
Bongiovanni, R.2
Chaussy, D.3
Gerbaldi, C.4
Beneventi, D.5
-
145
-
-
84855774274
-
Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry
-
[145] Grosjean, C., Miranda, P.H., Perrin, M., Poggi, P., Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 16:3 (2012), 1735–1744.
-
(2012)
Renew. Sustain. Energy Rev.
, vol.16
, Issue.3
, pp. 1735-1744
-
-
Grosjean, C.1
Miranda, P.H.2
Perrin, M.3
Poggi, P.4
-
146
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
[146] Tarascon, J.-M., Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 414:6861 (2001), 359–367.
-
(2001)
Nature
, vol.414
, Issue.6861
, pp. 359-367
-
-
Tarascon, J.-M.1
Armand, M.2
-
147
-
-
84895257521
-
Lithium-Ion Batteries
-
Springer
-
[147] Yoshio, M., Brodd, R.J., Kozawa, A., Lithium-Ion Batteries. 2009, Springer.
-
(2009)
-
-
Yoshio, M.1
Brodd, R.J.2
Kozawa, A.3
-
148
-
-
84934896487
-
Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes
-
[148] Bhatt, M.D., O'Dwyer, C., Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys. Chem. Chem. Phys. 17:7 (2015), 4799–4844.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, Issue.7
, pp. 4799-4844
-
-
Bhatt, M.D.1
O'Dwyer, C.2
-
149
-
-
84890347214
-
Paper-based batteries: a review
-
[149] Nguyen, T.H., Fraiwan, A., Choi, S., Paper-based batteries: a review. Biosens. Bioelectron. 54 (2014), 640–649.
-
(2014)
Biosens. Bioelectron.
, vol.54
, pp. 640-649
-
-
Nguyen, T.H.1
Fraiwan, A.2
Choi, S.3
-
150
-
-
79955530812
-
Paper electronics
-
[150] Tobjörk, D., Österbacka, R., Paper electronics. Adv. Mater. 23:17 (2011), 1935–1961.
-
(2011)
Adv. Mater.
, vol.23
, Issue.17
, pp. 1935-1961
-
-
Tobjörk, D.1
Österbacka, R.2
-
151
-
-
34748822489
-
Flexible energy storage devices based on nanocomposite paper
-
[151] Pushparaj, V.L., Shaijumon, M.M., Kumar, A., Murugesan, S., Ci, L., Vajtai, R., Linhardt, R.J., Nalamasu, O., Ajayan, P.M., Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. USA 104:34 (2007), 13574–13577.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, Issue.34
, pp. 13574-13577
-
-
Pushparaj, V.L.1
Shaijumon, M.M.2
Kumar, A.3
Murugesan, S.4
Ci, L.5
Vajtai, R.6
Linhardt, R.J.7
Nalamasu, O.8
Ajayan, P.M.9
-
152
-
-
84867482228
-
Poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposites incorporating cellulose nanocrystals with potential applications in lithium ion batteries
-
[152] Kelley, J., Simonsen, J., Ding, J., Poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposites incorporating cellulose nanocrystals with potential applications in lithium ion batteries. J. Appl. Polym. Sci. 127:1 (2013), 487–493.
-
(2013)
J. Appl. Polym. Sci.
, vol.127
, Issue.1
, pp. 487-493
-
-
Kelley, J.1
Simonsen, J.2
Ding, J.3
-
153
-
-
73949147538
-
Cellulose triacetate-based polymer gel electrolytes
-
[153] Lee, J.M., Nguyen, D.Q., Lee, S.B., Kim, H., Ahn, B.S., Lee, H., Kim, H.S., Cellulose triacetate-based polymer gel electrolytes. J. Appl. Polym. Sci. 115:1 (2010), 32–36.
-
(2010)
J. Appl. Polym. Sci.
, vol.115
, Issue.1
, pp. 32-36
-
-
Lee, J.M.1
Nguyen, D.Q.2
Lee, S.B.3
Kim, H.4
Ahn, B.S.5
Lee, H.6
Kim, H.S.7
-
154
-
-
84914096632
-
A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries
-
[154] Li, M., Wang, X., Yang, Y., Chang, Z., Wu, Y., Holze, R., A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J. Membr. Sci. 476 (2015), 112–118.
-
(2015)
J. Membr. Sci.
, vol.476
, pp. 112-118
-
-
Li, M.1
Wang, X.2
Yang, Y.3
Chang, Z.4
Wu, Y.5
Holze, R.6
-
155
-
-
84958074529
-
A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc-air batteries
-
[155] Fu, J., Zhang, J., Song, X., Zarrin, H., Tian, X., Qiao, J., Rasen, L., Li, K., Chen, Z., A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc-air batteries. Energy Environ. Sci. 9:2 (2016), 663–670.
-
(2016)
Energy Environ. Sci.
, vol.9
, Issue.2
, pp. 663-670
-
-
Fu, J.1
Zhang, J.2
Song, X.3
Zarrin, H.4
Tian, X.5
Qiao, J.6
Rasen, L.7
Li, K.8
Chen, Z.9
-
156
-
-
72849116878
-
Ultrafast all-polymer paper-based batteries
-
[156] Nyström, G., Razaq, A., Strømme, M., Nyholm, L., Mihranyan, A., Ultrafast all-polymer paper-based batteries. Nano Lett. 9:10 (2009), 3635–3639.
-
(2009)
Nano Lett.
, vol.9
, Issue.10
, pp. 3635-3639
-
-
Nyström, G.1
Razaq, A.2
Strømme, M.3
Nyholm, L.4
Mihranyan, A.5
-
157
-
-
35348957889
-
Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures
-
[157] Long, J.W., Rolison, D.R., Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures. Acc. Chem. Res. 40:9 (2007), 854–862.
-
(2007)
Acc. Chem. Res.
, vol.40
, Issue.9
, pp. 854-862
-
-
Long, J.W.1
Rolison, D.R.2
-
158
-
-
33745713659
-
High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
-
[158] Taberna, P.-L., Mitra, S., Poizot, P., Simon, P., Tarascon, J.-M., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5:7 (2006), 567–573.
-
(2006)
Nat. Mater.
, vol.5
, Issue.7
, pp. 567-573
-
-
Taberna, P.-L.1
Mitra, S.2
Poizot, P.3
Simon, P.4
Tarascon, J.-M.5
-
159
-
-
78751562557
-
Heterogeneous nanostructured electrode materials for electrochemical energy storage
-
[159] Liu, R., Duay, J., Lee, S.B., Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem. Commun. 47:5 (2011), 1384–1404.
-
(2011)
Chem. Commun.
, vol.47
, Issue.5
, pp. 1384-1404
-
-
Liu, R.1
Duay, J.2
Lee, S.B.3
-
160
-
-
7644220430
-
Three-dimensional battery architectures
-
[160] Long, J.W., Dunn, B., Rolison, D.R., White, H.S., Three-dimensional battery architectures. Chem. Rev. 104:10 (2004), 4463–4492.
-
(2004)
Chem. Rev.
, vol.104
, Issue.10
, pp. 4463-4492
-
-
Long, J.W.1
Dunn, B.2
Rolison, D.R.3
White, H.S.4
-
161
-
-
57649188116
-
Multifunctional 3D nanoarchitectures for energy storage and conversion
-
[161] Rolison, D.R., Long, J.W., Lytle, J.C., Fischer, A.E., Rhodes, C.P., McEvoy, T.M., Bourg, M.E., Lubers, A.M., Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 38:1 (2009), 226–252.
-
(2009)
Chem. Soc. Rev.
, vol.38
, Issue.1
, pp. 226-252
-
-
Rolison, D.R.1
Long, J.W.2
Lytle, J.C.3
Fischer, A.E.4
Rhodes, C.P.5
McEvoy, T.M.6
Bourg, M.E.7
Lubers, A.M.8
-
162
-
-
84880268216
-
Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials
-
[162] Wang, B., Li, X., Luo, B., Yang, J., Wang, X., Song, Q., Chen, S., Zhi, L., Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials. Small 9:14 (2013), 2399–2404.
-
(2013)
Small
, vol.9
, Issue.14
, pp. 2399-2404
-
-
Wang, B.1
Li, X.2
Luo, B.3
Yang, J.4
Wang, X.5
Song, Q.6
Chen, S.7
Zhi, L.8
-
163
-
-
51149095848
-
Nanotechnology and its applications in lignocellulosic composites, a mini review
-
[163] Kamel, S., Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym. Lett. 1:9 (2007), 546–575.
-
(2007)
Express Polym. Lett.
, vol.1
, Issue.9
, pp. 546-575
-
-
Kamel, S.1
-
164
-
-
79958021496
-
Nanocelluloses: a new family of nature‐based materials
-
[164] Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A., Nanocelluloses: a new family of nature‐based materials. Angew. Chem. Int. Ed. 50:24 (2011), 5438–5466.
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, Issue.24
, pp. 5438-5466
-
-
Klemm, D.1
Kramer, F.2
Moritz, S.3
Lindström, T.4
Ankerfors, M.5
Gray, D.6
Dorris, A.7
-
165
-
-
77952422914
-
Microfibrillated cellulose and new nanocomposite materials: a review
-
[165] Siró, I., Plackett, D., Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:3 (2010), 459–494.
-
(2010)
Cellulose
, vol.17
, Issue.3
, pp. 459-494
-
-
Siró, I.1
Plackett, D.2
-
166
-
-
84872261991
-
Silicon-conductive nanopaper for Li-ion batteries
-
[166] Hu, L., Liu, N., Eskilsson, M., Zheng, G., McDonough, J., Wågberg, L., Cui, Y., Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2:1 (2013), 138–145.
-
(2013)
Nano Energy
, vol.2
, Issue.1
, pp. 138-145
-
-
Hu, L.1
Liu, N.2
Eskilsson, M.3
Zheng, G.4
McDonough, J.5
Wågberg, L.6
Cui, Y.7
-
167
-
-
76049104775
-
Highly conductive paper for energy-storage devices
-
[167] Hu, L., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.-F., Cui, Y., Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. USA 106:51 (2009), 21490–21494.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, Issue.51
, pp. 21490-21494
-
-
Hu, L.1
Choi, J.W.2
Yang, Y.3
Jeong, S.4
La Mantia, F.5
Cui, L.-F.6
Cui, Y.7
-
168
-
-
77952848309
-
Printed energy storage devices by integration of electrodes and separators into single sheets of paper
-
[168] Hu, L., Wu, H., Cui, Y., Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl. Phys. Lett., 96(18), 2010, 183502.
-
(2010)
Appl. Phys. Lett.
, vol.96
, Issue.18
, pp. 183502
-
-
Hu, L.1
Wu, H.2
Cui, Y.3
-
169
-
-
77955610885
-
Self-rechargeable paper thin-film batteries: performance and applications
-
[169] Ferreira, I., Brás, B., Correia, N., Barquinha, P., Fortunato, E., Martins, R., Self-rechargeable paper thin-film batteries: performance and applications. J. Disp. Technol. 6:8 (2010), 332–335.
-
(2010)
J. Disp. Technol.
, vol.6
, Issue.8
, pp. 332-335
-
-
Ferreira, I.1
Brás, B.2
Correia, N.3
Barquinha, P.4
Fortunato, E.5
Martins, R.6
-
170
-
-
84926612941
-
Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization
-
[170] Liu, Y., Lu, T., Sun, Z., Chua, D.H., Pan, L., Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization. J. Mater. Chem. A 3:16 (2015), 8693–8700.
-
(2015)
J. Mater. Chem. A
, vol.3
, Issue.16
, pp. 8693-8700
-
-
Liu, Y.1
Lu, T.2
Sun, Z.3
Chua, D.H.4
Pan, L.5
-
171
-
-
84930684640
-
Study on the one-pot oxidative esterification of glycerol with MOF supported polyoxometalates as catalyst
-
[171] Zhu, J., Wang, P.-c., Lu, M., Study on the one-pot oxidative esterification of glycerol with MOF supported polyoxometalates as catalyst. Catal. Sci. Technol. 5:6 (2015), 3383–3393.
-
(2015)
Catal. Sci. Technol.
, vol.5
, Issue.6
, pp. 3383-3393
-
-
Zhu, J.1
Wang, P.-C.2
Lu, M.3
-
172
-
-
78650183426
-
Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering
-
[172] Wan, Y.Z., Zuo, G.F., Yu, F., Huang, Y.A., Ren, K.J., Luo, H.L., Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering. Surf. Coat. Technol. 205:8–9 (2011), 2938–2946.
-
(2011)
Surf. Coat. Technol.
, vol.205
, Issue.8-9
, pp. 2938-2946
-
-
Wan, Y.Z.1
Zuo, G.F.2
Yu, F.3
Huang, Y.A.4
Ren, K.J.5
Luo, H.L.6
-
173
-
-
84937423558
-
A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe 3 O 4 for high-performance flexible and binder-free lithium-ion battery anodes
-
[173] Wan, Y., Yang, Z., Xiong, G., Luo, H., A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe 3 O 4 for high-performance flexible and binder-free lithium-ion battery anodes. J. Mater. Chem. A 3:30 (2015), 15386–15393.
-
(2015)
J. Mater. Chem. A
, vol.3
, Issue.30
, pp. 15386-15393
-
-
Wan, Y.1
Yang, Z.2
Xiong, G.3
Luo, H.4
-
174
-
-
84954426774
-
Fe 2 O 3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries
-
[174] Huang, Y., Lin, Z., Zheng, M., Wang, T., Yang, J., Yuan, F., Lu, X., Liu, L., Sun, D., Amorphous, Fe 2 O 3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J. Power Sources 307 (2016), 649–656.
-
(2016)
J. Power Sources
, vol.307
, pp. 649-656
-
-
Huang, Y.1
Lin, Z.2
Zheng, M.3
Wang, T.4
Yang, J.5
Yuan, F.6
Lu, X.7
Liu, L.8
Sun, D.9
Amorphous10
-
175
-
-
84933056522
-
Anchoring Fe 3 O 4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries
-
[175] Wan, Y., Yang, Z., Xiong, G., Guo, R., Liu, Z., Luo, H., Anchoring Fe 3 O 4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J. Power Sources 294 (2015), 414–419.
-
(2015)
J. Power Sources
, vol.294
, pp. 414-419
-
-
Wan, Y.1
Yang, Z.2
Xiong, G.3
Guo, R.4
Liu, Z.5
Luo, H.6
-
176
-
-
84975730932
-
In-situ assembly of three-dimensional MoS 2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries
-
[176] Zhang, F., Tang, Y., Yang, Y., Zhang, X., Lee, C.-S., In-situ assembly of three-dimensional MoS 2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochim. Acta 211 (2016), 404–410.
-
(2016)
Electrochim. Acta
, vol.211
, pp. 404-410
-
-
Zhang, F.1
Tang, Y.2
Yang, Y.3
Zhang, X.4
Lee, C.-S.5
-
177
-
-
36448996706
-
A simple route to high performance nanometric metallic materials for Li-ion batteries involving the use of cellulose: the case of Sb
-
[177] Caballero, Á., Morales, J., Sánchez, L., A simple route to high performance nanometric metallic materials for Li-ion batteries involving the use of cellulose: the case of Sb. J. Power Sources 175:1 (2008), 553–557.
-
(2008)
J. Power Sources
, vol.175
, Issue.1
, pp. 553-557
-
-
Caballero, Á.1
Morales, J.2
Sánchez, L.3
-
178
-
-
77955967963
-
Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes
-
[178] Jabbour, L., Gerbaldi, C., Chaussy, D., Zeno, E., Bodoardo, S., Beneventi, D., Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J. Mater. Chem. 20:35 (2010), 7344–7347.
-
(2010)
J. Mater. Chem.
, vol.20
, Issue.35
, pp. 7344-7347
-
-
Jabbour, L.1
Gerbaldi, C.2
Chaussy, D.3
Zeno, E.4
Bodoardo, S.5
Beneventi, D.6
-
179
-
-
84872354897
-
Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries
-
[179] Jabbour, L., Destro, M., Chaussy, D., Gerbaldi, C., Penazzi, N., Bodoardo, S., Beneventi, D., Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose 20:1 (2013), 571–582.
-
(2013)
Cellulose
, vol.20
, Issue.1
, pp. 571-582
-
-
Jabbour, L.1
Destro, M.2
Chaussy, D.3
Gerbaldi, C.4
Penazzi, N.5
Bodoardo, S.6
Beneventi, D.7
-
180
-
-
84856728053
-
Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries
-
[180] Jabbour, L., Destro, M., Gerbaldi, C., Chaussy, D., Penazzi, N., Beneventi, D., Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J. Mater. Chem. 22:7 (2012), 3227–3233.
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.7
, pp. 3227-3233
-
-
Jabbour, L.1
Destro, M.2
Gerbaldi, C.3
Chaussy, D.4
Penazzi, N.5
Beneventi, D.6
-
181
-
-
0032667512
-
Characterization of microporous separators for lithium-ion batteries
-
[181] Venugopal, G., Moore, J., Howard, J., Pendalwar, S., Characterization of microporous separators for lithium-ion batteries. J. Power Sources 77:1 (1999), 34–41.
-
(1999)
J. Power Sources
, vol.77
, Issue.1
, pp. 34-41
-
-
Venugopal, G.1
Moore, J.2
Howard, J.3
Pendalwar, S.4
-
182
-
-
7644236656
-
Battery separators
-
[182] Arora, P., Zhang, Z., Battery separators. Chem. Rev. 104:10 (2004), 4419–4462.
-
(2004)
Chem. Rev.
, vol.104
, Issue.10
, pp. 4419-4462
-
-
Arora, P.1
Zhang, Z.2
-
183
-
-
84864222572
-
Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries
-
[183] Chun, S.-J., Choi, E.-S., Lee, E.-H., Kim, J.H., Lee, S.-Y., Lee, S.-Y., Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 22:32 (2012), 16618–16626.
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.32
, pp. 16618-16626
-
-
Chun, S.-J.1
Choi, E.-S.2
Lee, E.-H.3
Kim, J.H.4
Lee, S.-Y.5
Lee, S.-Y.6
-
184
-
-
78049344139
-
Thin, flexible secondary Li-ion paper batteries
-
[184] Hu, L., Wu, H., La Mantia, F., Yang, Y., Cui, Y., Thin, flexible secondary Li-ion paper batteries. Acs Nano 4:10 (2010), 5843–5848.
-
(2010)
Acs Nano
, vol.4
, Issue.10
, pp. 5843-5848
-
-
Hu, L.1
Wu, H.2
La Mantia, F.3
Yang, Y.4
Cui, Y.5
-
185
-
-
58249139449
-
A microporous gel electrolyte based on poly (vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery
-
[185] Ren, Z., Liu, Y., Sun, K., Zhou, X., Zhang, N., A microporous gel electrolyte based on poly (vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochim. Acta 54:6 (2009), 1888–1892.
-
(2009)
Electrochim. Acta
, vol.54
, Issue.6
, pp. 1888-1892
-
-
Ren, Z.1
Liu, Y.2
Sun, K.3
Zhou, X.4
Zhang, N.5
-
186
-
-
84872154469
-
Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator
-
[186] Zhang, J., Liu, Z., Kong, Q., Zhang, C., Pang, S., Yue, L., Wang, X., Yao, J., Cui, G., Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl. Mater. Interfaces 5:1 (2013), 128–134.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, Issue.1
, pp. 128-134
-
-
Zhang, J.1
Liu, Z.2
Kong, Q.3
Zhang, C.4
Pang, S.5
Yue, L.6
Wang, X.7
Yao, J.8
Cui, G.9
-
187
-
-
84893285410
-
Cellulose/Polysulfonamide composite membrane as a high performance lithium-ion battery separator
-
[187] Xu, Q., Kong, Q., Liu, Z., Wang, X., Liu, R., Zhang, J., Yue, L., Duan, Y., Cui, G., Cellulose/Polysulfonamide composite membrane as a high performance lithium-ion battery separator. ACS Sustain. Chem. Eng. 2:2 (2014), 194–199.
-
(2014)
ACS Sustain. Chem. Eng.
, vol.2
, Issue.2
, pp. 194-199
-
-
Xu, Q.1
Kong, Q.2
Liu, Z.3
Wang, X.4
Liu, R.5
Zhang, J.6
Yue, L.7
Duan, Y.8
Cui, G.9
-
188
-
-
84890951372
-
An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran
-
[188] Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., Ma, L., An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresour. Technol. 154 (2014), 10–17.
-
(2014)
Bioresour. Technol.
, vol.154
, pp. 10-17
-
-
Long, J.1
Zhang, Q.2
Wang, T.3
Zhang, X.4
Xu, Y.5
Ma, L.6
-
189
-
-
0035395120
-
Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries
-
[189] Schmidt, M., Heider, U., Kuehner, A., Oesten, R., Jungnitz, M., Ignat'ev, N., Sartori, P., Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J. Power Sources 97 (2001), 557–560.
-
(2001)
J. Power Sources
, vol.97
, pp. 557-560
-
-
Schmidt, M.1
Heider, U.2
Kuehner, A.3
Oesten, R.4
Jungnitz, M.5
Ignat'ev, N.6
Sartori, P.7
-
190
-
-
3142735233
-
Interpretation of the cellulose-water adsorption isotherm and data concerning the effect of swellingand drying on the colloidal surface of Cellulose1, 2
-
[190] Assaf, A., Haas, R., Purves, C., New, A., Interpretation of the cellulose-water adsorption isotherm and data concerning the effect of swellingand drying on the colloidal surface of Cellulose1, 2. J. Am. Chem. Soc. 66:1 (1944), 66–73.
-
(1944)
J. Am. Chem. Soc.
, vol.66
, Issue.1
, pp. 66-73
-
-
Assaf, A.1
Haas, R.2
Purves, C.3
New, A.4
-
191
-
-
17944393570
-
Vaporization of bound water associated with cellulose fibres
-
[191] Hatakeyama, T., Nakamura, K., Hatakeyama, H., Vaporization of bound water associated with cellulose fibres. Thermochim. Acta 352 (2000), 233–239.
-
(2000)
Thermochim. Acta
, vol.352
, pp. 233-239
-
-
Hatakeyama, T.1
Nakamura, K.2
Hatakeyama, H.3
-
192
-
-
0034817510
-
Overview of water evolution during the thermal degradation of cellulose
-
[192] Scheirs, J., Camino, G., Tumiatti, W., Overview of water evolution during the thermal degradation of cellulose. Eur. Polym. J. 37:5 (2001), 933–942.
-
(2001)
Eur. Polym. J.
, vol.37
, Issue.5
, pp. 933-942
-
-
Scheirs, J.1
Camino, G.2
Tumiatti, W.3
-
193
-
-
84876516991
-
Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose
-
[193] Leijonmarck, S., Cornell, A., Lindbergh, G., Wågberg, L., Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J. Mater. Chem. A 1:15 (2013), 4671–4677.
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.15
, pp. 4671-4677
-
-
Leijonmarck, S.1
Cornell, A.2
Lindbergh, G.3
Wågberg, L.4
-
194
-
-
46849094688
-
Cellulose nanopaper structures of high toughness
-
[194] Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T., Cellulose nanopaper structures of high toughness. Biomacromolecules 9:6 (2008), 1579–1585.
-
(2008)
Biomacromolecules
, vol.9
, Issue.6
, pp. 1579-1585
-
-
Henriksson, M.1
Berglund, L.A.2
Isaksson, P.3
Lindstrom, T.4
Nishino, T.5
-
195
-
-
66149117817
-
Optically transparent nanofiber paper
-
[195] Nogi, M., Iwamoto, S., Nakagaito, A.N., Yano, H., Optically transparent nanofiber paper. Adv. Mater. 21:16 (2009), 1595–1598.
-
(2009)
Adv. Mater.
, vol.21
, Issue.16
, pp. 1595-1598
-
-
Nogi, M.1
Iwamoto, S.2
Nakagaito, A.N.3
Yano, H.4
-
196
-
-
84879374506
-
Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries
-
[196] Kim, J.-H., Kim, J.-H., Choi, E.-S., Yu, H.K., Kim, J.H., Wu, Q., Chun, S.-J., Lee, S.-Y., Lee, S.-Y., Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J. Power Sources 242 (2013), 533–540.
-
(2013)
J. Power Sources
, vol.242
, pp. 533-540
-
-
Kim, J.-H.1
Kim, J.-H.2
Choi, E.-S.3
Yu, H.K.4
Kim, J.H.5
Wu, Q.6
Chun, S.-J.7
Lee, S.-Y.8
Lee, S.-Y.9
-
197
-
-
84946086094
-
Preparation and characterization of a Lithium-ion battery separator from cellulose nanofibers
-
[197] Zhang, H., Wang, X., Liang, Y., Preparation and characterization of a Lithium-ion battery separator from cellulose nanofibers. Heliyon, 1(2), 2015, e00032.
-
(2015)
Heliyon
, vol.1
, Issue.2
, pp. e00032
-
-
Zhang, H.1
Wang, X.2
Liang, Y.3
-
198
-
-
84907861868
-
Heterolayered, one-dimensional nanobuilding block mat batteries
-
[198] Choi, K.-H., Cho, S.-J., Chun, S.-J., Yoo, J.T., Lee, C.K., Kim, W., Wu, Q., Park, S.-B., Choi, D.-H., Lee, S.-Y., Heterolayered, one-dimensional nanobuilding block mat batteries. Nano Lett. 14:10 (2014), 5677–5686.
-
(2014)
Nano Lett.
, vol.14
, Issue.10
, pp. 5677-5686
-
-
Choi, K.-H.1
Cho, S.-J.2
Chun, S.-J.3
Yoo, J.T.4
Lee, C.K.5
Kim, W.6
Wu, Q.7
Park, S.-B.8
Choi, D.-H.9
Lee, S.-Y.10
-
199
-
-
84943584508
-
Hetero‐nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability
-
[199] Cho, S.J., Choi, K.H., Yoo, J.T., Kim, J.H., Lee, Y.H., Chun, S.J., Park, S.B., Choi, D.H., Wu, Q., Lee, S.Y., Hetero‐nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Adv. Funct. Mater. 25:38 (2015), 6029–6040.
-
(2015)
Adv. Funct. Mater.
, vol.25
, Issue.38
, pp. 6029-6040
-
-
Cho, S.J.1
Choi, K.H.2
Yoo, J.T.3
Kim, J.H.4
Lee, Y.H.5
Chun, S.J.6
Park, S.B.7
Choi, D.H.8
Wu, Q.9
Lee, S.Y.10
-
200
-
-
84907861868
-
One-dimensional nanobuilding block mat batteries
-
[200] Choi, K.H., Cho, S.J., Chun, S.J., Yoo, J.T., Lee, C.K., Kim, W., Wu, Q.L., Park, S.B., Choi, D.H., Lee, S.Y., Lee, S.Y., Heterolayered, One-dimensional nanobuilding block mat batteries. Nano Lett. 14:10 (2014), 5677–5686.
-
(2014)
Nano Lett.
, vol.14
, Issue.10
, pp. 5677-5686
-
-
Choi, K.H.1
Cho, S.J.2
Chun, S.J.3
Yoo, J.T.4
Lee, C.K.5
Kim, W.6
Wu, Q.L.7
Park, S.B.8
Choi, D.H.9
Lee, S.Y.10
Lee, S.Y.11
Heterolayered12
-
201
-
-
62349097957
-
Design and fabrication of multifunctional structural batteries
-
[201] Liu, P., Sherman, E., Jacobsen, A., Design and fabrication of multifunctional structural batteries. J. Power Sources 189:1 (2009), 646–650.
-
(2009)
J. Power Sources
, vol.189
, Issue.1
, pp. 646-650
-
-
Liu, P.1
Sherman, E.2
Jacobsen, A.3
-
202
-
-
0019044745
-
Polymer solid electrolytes: stability domain
-
[202] Armand, M., Duclot, M., Rigaud, P., Polymer solid electrolytes: stability domain. Solid State Ion. 3 (1981), 429–430.
-
(1981)
Solid State Ion.
, vol.3
, pp. 429-430
-
-
Armand, M.1
Duclot, M.2
Rigaud, P.3
-
203
-
-
3342894970
-
Polymer solid electrolytes-an overview
-
[203] Armand, M., Polymer solid electrolytes-an overview. Solid State Ion. 9 (1983), 745–754.
-
(1983)
Solid State Ion.
, vol.9
, pp. 745-754
-
-
Armand, M.1
-
204
-
-
0019623862
-
Structure and ion transport in polymer-salt complexes
-
[204] Shriver, D., Papke, B., Ratner, M.A., Dupon, R., Wong, T., Brodwin, M., Structure and ion transport in polymer-salt complexes. Solid State Ion. 5 (1981), 83–88.
-
(1981)
Solid State Ion.
, vol.5
, pp. 83-88
-
-
Shriver, D.1
Papke, B.2
Ratner, M.A.3
Dupon, R.4
Wong, T.5
Brodwin, M.6
-
205
-
-
0004580674
-
Complexes of alkali metal ions with poly (ethylene oxide)
-
[205] Fenton, D., Parker, J., Wright, P., Complexes of alkali metal ions with poly (ethylene oxide). Polymer, 14(11), 1973, 589.
-
(1973)
Polymer
, vol.14
, Issue.11
, pp. 589
-
-
Fenton, D.1
Parker, J.2
Wright, P.3
-
206
-
-
0000603265
-
Electrical conductivity in ionic complexes of poly (ethylene oxide)
-
[206] Wright, P.V., Electrical conductivity in ionic complexes of poly (ethylene oxide). Br. Polym. J. 7:5 (1975), 319–327.
-
(1975)
Br. Polym. J.
, vol.7
, Issue.5
, pp. 319-327
-
-
Wright, P.V.1
-
207
-
-
84905192889
-
Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications
-
[207] Willgert, M., Leijonmarck, S., Lindbergh, G., Malmström, E., Johansson, M., Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications. J. Mater. Chem. A 2:33 (2014), 13556–13564.
-
(2014)
J. Mater. Chem. A
, vol.2
, Issue.33
, pp. 13556-13564
-
-
Willgert, M.1
Leijonmarck, S.2
Lindbergh, G.3
Malmström, E.4
Johansson, M.5
-
208
-
-
0036533758
-
Ionic conductivity and electrochemical characterization of novel interpenetrating polymer network electrolytes
-
[208] Hou, X., Siow, K.S., Ionic conductivity and electrochemical characterization of novel interpenetrating polymer network electrolytes. Solid State Ion. 147:3 (2002), 391–395.
-
(2002)
Solid State Ion.
, vol.147
, Issue.3
, pp. 391-395
-
-
Hou, X.1
Siow, K.S.2
-
209
-
-
84867349992
-
Enhanced ionic conductivity of semi-IPN solid polymer electrolytes based on star-shaped oligo (ethyleneoxy) cyclotriphosphazenes
-
[209] He, D., Cho, S.Y., Kim, D.W., Lee, C., Kang, Y., Enhanced ionic conductivity of semi-IPN solid polymer electrolytes based on star-shaped oligo (ethyleneoxy) cyclotriphosphazenes. Macromolecules 45:19 (2012), 7931–7938.
-
(2012)
Macromolecules
, vol.45
, Issue.19
, pp. 7931-7938
-
-
He, D.1
Cho, S.Y.2
Kim, D.W.3
Lee, C.4
Kang, Y.5
-
210
-
-
4143051567
-
Synthesis of polymer gel electrolyte with high molecular weight poly (methyl methacrylate)–clay nanocomposite
-
[210] Meneghetti, P., Qutubuddin, S., Webber, A., Synthesis of polymer gel electrolyte with high molecular weight poly (methyl methacrylate)–clay nanocomposite. Electrochim. Acta 49:27 (2004), 4923–4931.
-
(2004)
Electrochim. Acta
, vol.49
, Issue.27
, pp. 4923-4931
-
-
Meneghetti, P.1
Qutubuddin, S.2
Webber, A.3
-
211
-
-
69549089785
-
UV-cured polymer electrolyte membranes for Li-cells: improved mechanical properties by a novel cellulose reinforcement
-
[211] Nair, J.R., Gerbaldi, C., Chiappone, A., Zeno, E., Bongiovanni, R., Bodoardo, S., Penazzi, N., UV-cured polymer electrolyte membranes for Li-cells: improved mechanical properties by a novel cellulose reinforcement. Electrochem. Commun. 11:9 (2009), 1796–1798.
-
(2009)
Electrochem. Commun.
, vol.11
, Issue.9
, pp. 1796-1798
-
-
Nair, J.R.1
Gerbaldi, C.2
Chiappone, A.3
Zeno, E.4
Bongiovanni, R.5
Bodoardo, S.6
Penazzi, N.7
-
212
-
-
80053560067
-
Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability
-
[212] Chiappone, A., Nair, J.R., Gerbaldi, C., Jabbour, L., Bongiovanni, R., Zeno, E., Beneventi, D., Penazzi, N., Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J. Power Sources 196:23 (2011), 10280–10288.
-
(2011)
J. Power Sources
, vol.196
, Issue.23
, pp. 10280-10288
-
-
Chiappone, A.1
Nair, J.R.2
Gerbaldi, C.3
Jabbour, L.4
Bongiovanni, R.5
Zeno, E.6
Beneventi, D.7
Penazzi, N.8
-
213
-
-
4043097610
-
Nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose nanocrystals
-
[213] Azizi Samir, M.A.S., Alloin, F., Gorecki, W., Sanchez, J.-Y., Dufresne, A., Nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose nanocrystals. J. Phys. Chem. B 108:30 (2004), 10845–10852.
-
(2004)
J. Phys. Chem. B
, vol.108
, Issue.30
, pp. 10845-10852
-
-
Azizi Samir, M.A.S.1
Alloin, F.2
Gorecki, W.3
Sanchez, J.-Y.4
Dufresne, A.5
-
214
-
-
3242726723
-
Plasticized nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose whiskers
-
[214] Samir, M.A.S.A., Mateos, A.M., Alloin, F., Sanchez, J.-Y., Dufresne, A., Plasticized nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose whiskers. Electrochim. Acta 49:26 (2004), 4667–4677.
-
(2004)
Electrochim. Acta
, vol.49
, Issue.26
, pp. 4667-4677
-
-
Samir, M.A.S.A.1
Mateos, A.M.2
Alloin, F.3
Sanchez, J.-Y.4
Dufresne, A.5
-
215
-
-
3142611462
-
Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers
-
[215] Azizi Samir, M.A.S., Alloin, F., Sanchez, J.-Y., Dufresne, A., Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37:13 (2004), 4839–4844.
-
(2004)
Macromolecules
, vol.37
, Issue.13
, pp. 4839-4844
-
-
Azizi Samir, M.A.S.1
Alloin, F.2
Sanchez, J.-Y.3
Dufresne, A.4
-
216
-
-
2442564684
-
Cellulose nanocrystals reinforced poly (oxyethylene)
-
[216] Samir, M.A.S.A., Alloin, F., Sanchez, J.-Y., Dufresne, A., Cellulose nanocrystals reinforced poly (oxyethylene). Polymer 45:12 (2004), 4149–4157.
-
(2004)
Polymer
, vol.45
, Issue.12
, pp. 4149-4157
-
-
Samir, M.A.S.A.1
Alloin, F.2
Sanchez, J.-Y.3
Dufresne, A.4
-
217
-
-
20344389531
-
POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers
-
[217] Samir, M.A., Chazeau, L., Alloin, F., Cavaillé, J.-Y., Dufresne, A., Sanchez, J.-Y., POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim. Acta 50:19 (2005), 3897–3903.
-
(2005)
Electrochim. Acta
, vol.50
, Issue.19
, pp. 3897-3903
-
-
Samir, M.A.1
Chazeau, L.2
Alloin, F.3
Cavaillé, J.-Y.4
Dufresne, A.5
Sanchez, J.-Y.6
-
218
-
-
78650836157
-
Semiconductor/biomolecular composites for solar energy applications
-
[218] Li, C.H., Wang, F., Yu, J.C., Semiconductor/biomolecular composites for solar energy applications. Energy Environ. Sci. 4:1 (2011), 100–113.
-
(2011)
Energy Environ. Sci.
, vol.4
, Issue.1
, pp. 100-113
-
-
Li, C.H.1
Wang, F.2
Yu, J.C.3
-
219
-
-
84875772155
-
Recyclable organic solar cells on cellulose nanocrystal substrates
-
[219] Zhou, Y.H., Fuentes-Hernandez, C., Khan, T.M., Liu, J.C., Hsu, J., Shim, J.W., Dindar, A., Youngblood, J.P., Moon, R.J., Kippelen, B., Recyclable organic solar cells on cellulose nanocrystal substrates. Sci. Rep., 3, 2013.
-
(2013)
Sci. Rep.
, vol.3
-
-
Zhou, Y.H.1
Fuentes-Hernandez, C.2
Khan, T.M.3
Liu, J.C.4
Hsu, J.5
Shim, J.W.6
Dindar, A.7
Youngblood, J.P.8
Moon, R.J.9
Kippelen, B.10
-
220
-
-
84893204703
-
Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination
-
[220] Zhou, Y.H., Khan, T.M., Liu, J.C., Fuentes-Hernandez, C., Shim, J.W., Najafabadi, E., Youngblood, J.P., Moon, R.J., Kippelen, B., Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Org. Electron. 15:3 (2014), 661–666.
-
(2014)
Org. Electron.
, vol.15
, Issue.3
, pp. 661-666
-
-
Zhou, Y.H.1
Khan, T.M.2
Liu, J.C.3
Fuentes-Hernandez, C.4
Shim, J.W.5
Najafabadi, E.6
Youngblood, J.P.7
Moon, R.J.8
Kippelen, B.9
-
221
-
-
84894137215
-
Novel Nanostructured Paper with Ultrahigh Transparency and Ultrahigh Haze for Solar Cells
-
[221] Fang, Z.Q., Zhu, H.L., Yuan, Y.B., Ha, D., Zhu, S.Z., Preston, C., Chen, Q.X., Li, Y.Y., Han, X.G., Lee, S., Chen, G., Li, T., Munday, J., Huang, J.S., Hu, L.B., Novel Nanostructured Paper with Ultrahigh Transparency and Ultrahigh Haze for Solar Cells. Nano Lett. 14:2 (2014), 765–773.
-
(2014)
Nano Lett.
, vol.14
, Issue.2
, pp. 765-773
-
-
Fang, Z.Q.1
Zhu, H.L.2
Yuan, Y.B.3
Ha, D.4
Zhu, S.Z.5
Preston, C.6
Chen, Q.X.7
Li, Y.Y.8
Han, X.G.9
Lee, S.10
Chen, G.11
Li, T.12
Munday, J.13
Huang, J.S.14
Hu, L.B.15
-
222
-
-
84942112452
-
Enhancement of thermal, mechanical and barrier properties of EVA solar cell encapsulating films by reinforcing with esterified cellulose nanofibres
-
[222] Yuwawech, K., Wootthikanokkhan, J., Tanpichai, S., Enhancement of thermal, mechanical and barrier properties of EVA solar cell encapsulating films by reinforcing with esterified cellulose nanofibres. Polym. Test. 48 (2015), 12–22.
-
(2015)
Polym. Test.
, vol.48
, pp. 12-22
-
-
Yuwawech, K.1
Wootthikanokkhan, J.2
Tanpichai, S.3
-
223
-
-
84948471481
-
Transparent conductive nanofiber paper for foldable solar cells
-
[223] Nogi, M., Karakawa, M., Komoda, N., Yagyu, H., Nge, T.T., Transparent conductive nanofiber paper for foldable solar cells. Sci. Rep., 5, 2015.
-
(2015)
Sci. Rep.
, vol.5
-
-
Nogi, M.1
Karakawa, M.2
Komoda, N.3
Yagyu, H.4
Nge, T.T.5
-
224
-
-
84979723577
-
Inverted organic solar cells using nanocellulose as substrate
-
[224] Costa, S.V., Pingel, P., Janietz, S., Nogueira, A.F., Inverted organic solar cells using nanocellulose as substrate. J. Appl. Polym. Sci., 133(28), 2016.
-
(2016)
J. Appl. Polym. Sci.
, vol.133
, Issue.28
-
-
Costa, S.V.1
Pingel, P.2
Janietz, S.3
Nogueira, A.F.4
-
225
-
-
84902988799
-
Nanocellulose aerogel membranes for optimal electrolyte filling in dye solar cells
-
[225] Miettunen, K., Vapaavuori, J., Tiihonen, A., Poskela, A., Lahtinen, P., Hatme, J., Lund, P., Nanocellulose aerogel membranes for optimal electrolyte filling in dye solar cells. Nano Energy 8 (2014), 95–102.
-
(2014)
Nano Energy
, vol.8
, pp. 95-102
-
-
Miettunen, K.1
Vapaavuori, J.2
Tiihonen, A.3
Poskela, A.4
Lahtinen, P.5
Hatme, J.6
Lund, P.7
-
226
-
-
84903141543
-
Structure-performance correlation of nanocellulose-based polymer electrolytes for efficient quasi-solid DSSCs
-
[226] Chiappone, A., Bella, F., Nair, J.R., Meligrana, G., Bongiovanni, R., Gerbaldi, C., Structure-performance correlation of nanocellulose-based polymer electrolytes for efficient quasi-solid DSSCs. Chemelectrochem 1:8 (2014), 1350–1358.
-
(2014)
Chemelectrochem
, vol.1
, Issue.8
, pp. 1350-1358
-
-
Chiappone, A.1
Bella, F.2
Nair, J.R.3
Meligrana, G.4
Bongiovanni, R.5
Gerbaldi, C.6
-
227
-
-
84979654225
-
Overview of cellulose nanomaterials, their capabilities and applications
-
[227] Moon, R.J., Schueneman, G.T., Simonsen, J., Overview of cellulose nanomaterials, their capabilities and applications. J. Miner. Metals Mater. Soc. 68:9 (2016), 2383–2394.
-
(2016)
J. Miner. Metals Mater. Soc.
, vol.68
, Issue.9
, pp. 2383-2394
-
-
Moon, R.J.1
Schueneman, G.T.2
Simonsen, J.3
-
228
-
-
84958905232
-
Review of the recent developments in cellulose nanocomposite processing
-
[228] Oksman, K., Aitomaki, Y., Mathew, A.P., Siqueira, G., Zhou, Q., Butylina, S., Tanpichai, S., Zhou, X.J., Hooshmand, S., Review of the recent developments in cellulose nanocomposite processing. Compos. Part A-Appl. Sci. Manuf. 83 (2016), 2–18.
-
(2016)
Compos. Part A-Appl. Sci. Manuf.
, vol.83
, pp. 2-18
-
-
Oksman, K.1
Aitomaki, Y.2
Mathew, A.P.3
Siqueira, G.4
Zhou, Q.5
Butylina, S.6
Tanpichai, S.7
Zhou, X.J.8
Hooshmand, S.9
|