-
1
-
-
84888245642
-
Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium ion battery
-
[1] Yang, P.X., Liu, L., Li, L.B., Hou, J., Xu, Y.P., Ren, X.F., et al. Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium ion battery. Electrochim. Acta 115 (2014), 454–460.
-
(2014)
Electrochim. Acta
, vol.115
, pp. 454-460
-
-
Yang, P.X.1
Liu, L.2
Li, L.B.3
Hou, J.4
Xu, Y.P.5
Ren, X.F.6
-
2
-
-
70350149802
-
Preparation and characterization of crosslinked cellulose-sulfosuccinic acidmembranes as proton conducting electrolytes.pdf
-
[2] Seo, J.A., Kim, J.C., Koh, J.K., Ahn, S.H., Kim, J.H., Preparation and characterization of crosslinked cellulose-sulfosuccinic acidmembranes as proton conducting electrolytes.pdf. Ionics 15 (2009), 555–560.
-
(2009)
Ionics
, vol.15
, pp. 555-560
-
-
Seo, J.A.1
Kim, J.C.2
Koh, J.K.3
Ahn, S.H.4
Kim, J.H.5
-
3
-
-
84954429335
-
A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin
-
[3] Gong, S.-D., Huang, Y., Cao, H.-J., Lin, Y.-H., Li, Y., Tang, S.-H., et al. A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. J. Power Sources 307 (2016), 624–633.
-
(2016)
J. Power Sources
, vol.307
, pp. 624-633
-
-
Gong, S.-D.1
Huang, Y.2
Cao, H.-J.3
Lin, Y.-H.4
Li, Y.5
Tang, S.-H.6
-
4
-
-
84973514399
-
Influence of a rigid polystyrene block on the free volume and ionic conductivity of a gel polymer electrolyte based on poly(methyl methacrylate)-block-polystyrene
-
[4] Guan, X.H., Chen, F., Li, Z.G., Zhou, H.L., Ma, X.Y., Influence of a rigid polystyrene block on the free volume and ionic conductivity of a gel polymer electrolyte based on poly(methyl methacrylate)-block-polystyrene. J. Appl. Polym. Sci., 133(38), 2016.
-
(2016)
J. Appl. Polym. Sci.
, vol.133
, Issue.38
-
-
Guan, X.H.1
Chen, F.2
Li, Z.G.3
Zhou, H.L.4
Ma, X.Y.5
-
5
-
-
76249131385
-
Challenges for rechargeable Li batteries
-
[5] Goodenough, J.B., Kim, Y., Challenges for rechargeable Li batteries. Chem. Mater. 22:3 (2010), 587–603.
-
(2010)
Chem. Mater.
, vol.22
, Issue.3
, pp. 587-603
-
-
Goodenough, J.B.1
Kim, Y.2
-
6
-
-
84979747833
-
Electrochemical and cycling performances of novel nonafluorobutanesulfonate (nonaflate) ionic liquid based ternary gel polymer electrolyte membranes for rechargeable lithium ion batteries
-
[6] Karuppasamy, K., Reddy, P.A., Sriniyas, G., Tewari, A., Sharma, R., Shajan, X.S., et al. Electrochemical and cycling performances of novel nonafluorobutanesulfonate (nonaflate) ionic liquid based ternary gel polymer electrolyte membranes for rechargeable lithium ion batteries. J. Membr. Sci. 514 (2016), 350–357.
-
(2016)
J. Membr. Sci.
, vol.514
, pp. 350-357
-
-
Karuppasamy, K.1
Reddy, P.A.2
Sriniyas, G.3
Tewari, A.4
Sharma, R.5
Shajan, X.S.6
-
7
-
-
80053565314
-
Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries
-
[7] Carol, P., Ramakrishnan, P., John, B., Cheruvally, G., Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. J. Power Sources 196:23 (2011), 10156–10162.
-
(2011)
J. Power Sources
, vol.196
, Issue.23
, pp. 10156-10162
-
-
Carol, P.1
Ramakrishnan, P.2
John, B.3
Cheruvally, G.4
-
8
-
-
84961142815
-
Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate
-
[8] Premalatha, M., Vijaya, N., Selvasekarapandian, S., Selvalakshmi, S., Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22:8 (2016), 1299–1310.
-
(2016)
Ionics
, vol.22
, Issue.8
, pp. 1299-1310
-
-
Premalatha, M.1
Vijaya, N.2
Selvasekarapandian, S.3
Selvalakshmi, S.4
-
9
-
-
77956460365
-
Carboxymethylation of bacterial cellulose
-
[9] Schlufter, K., Heinze, T., Carboxymethylation of bacterial cellulose. Macromol. Symp. 294:2 (2010), 117–124.
-
(2010)
Macromol. Symp.
, vol.294
, Issue.2
, pp. 117-124
-
-
Schlufter, K.1
Heinze, T.2
-
10
-
-
84865420923
-
Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC)
-
[10] Müller, D., Mandelli, J.S., Marins, J.A., Soares, B.G., Porto, L.M., Rambo, C.R., et al. Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:5 (2012), 1645–1654.
-
(2012)
Cellulose
, vol.19
, Issue.5
, pp. 1645-1654
-
-
Müller, D.1
Mandelli, J.S.2
Marins, J.A.3
Soares, B.G.4
Porto, L.M.5
Rambo, C.R.6
-
11
-
-
84927946676
-
Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests
-
[11] Gao, X., Shi, Z.J., Liu, C.Q., Yang, G., Sevostianov, I., Silberschmidt, V.V., Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests. Polym. Test. 44 (2015), 82–92.
-
(2015)
Polym. Test.
, vol.44
, pp. 82-92
-
-
Gao, X.1
Shi, Z.J.2
Liu, C.Q.3
Yang, G.4
Sevostianov, I.5
Silberschmidt, V.V.6
-
12
-
-
84991780791
-
Oriented bacterial cellulose-soy protein based fully ‘green’ nanocomposites
-
[12] Rahman, M.M., Netravali, A.N., Oriented bacterial cellulose-soy protein based fully ‘green’ nanocomposites. Compos Sci. Technol. 136 (2016), 85–93.
-
(2016)
Compos Sci. Technol.
, vol.136
, pp. 85-93
-
-
Rahman, M.M.1
Netravali, A.N.2
-
13
-
-
28744448243
-
Mechanical properties of bacterial cellulose and interactions with smooth muscle cells
-
[13] Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., et al. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:9 (2006), 2141–2149.
-
(2006)
Biomaterials
, vol.27
, Issue.9
, pp. 2141-2149
-
-
Backdahl, H.1
Helenius, G.2
Bodin, A.3
Nannmark, U.4
Johansson, B.R.5
Risberg, B.6
-
14
-
-
84937879183
-
Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration
-
[14] Wen, X., Zheng, Y., Wu, J., Wang, L.N., Yuan, Z., Peng, J., et al. Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration. Int. J. Nanomed. 10 (2015), 4623–4637.
-
(2015)
Int. J. Nanomed.
, vol.10
, pp. 4623-4637
-
-
Wen, X.1
Zheng, Y.2
Wu, J.3
Wang, L.N.4
Yuan, Z.5
Peng, J.6
-
15
-
-
3242655507
-
Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
-
[15] Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:4 (2005), 419–431.
-
(2005)
Biomaterials
, vol.26
, Issue.4
, pp. 419-431
-
-
Svensson, A.1
Nicklasson, E.2
Harrah, T.3
Panilaitis, B.4
Kaplan, D.L.5
Brittberg, M.6
-
16
-
-
84861102053
-
Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC
-
[16] Jiang, G., Qiao, J., Hong, F., Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC. Int. J. Hydrogen Energy 37:11 (2012), 9182–9192.
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, Issue.11
, pp. 9182-9192
-
-
Jiang, G.1
Qiao, J.2
Hong, F.3
-
17
-
-
84962619256
-
Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network
-
[17] Wang, F., Kim, H.-J., Park, S., Kee, C.-D., Kim, S.-J., Oh, I.-K., Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos Sci. Technol. 128 (2016), 33–40.
-
(2016)
Compos Sci. Technol.
, vol.128
, pp. 33-40
-
-
Wang, F.1
Kim, H.-J.2
Park, S.3
Kee, C.-D.4
Kim, S.-J.5
Oh, I.-K.6
-
18
-
-
84994034448
-
Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor
-
[18] Ma, L., Liu, R., Niu, H., Zhao, M., Huang, Y., Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Compos Sci. Technol. 137 (2016), 87–93.
-
(2016)
Compos Sci. Technol.
, vol.137
, pp. 87-93
-
-
Ma, L.1
Liu, R.2
Niu, H.3
Zhao, M.4
Huang, Y.5
-
19
-
-
84920200889
-
Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries
-
[19] Jiang, F., Yin, L., Yu, Q., Zhong, C., Zhang, J., Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J. Power Sources 279 (2015), 21–27.
-
(2015)
J. Power Sources
, vol.279
, pp. 21-27
-
-
Jiang, F.1
Yin, L.2
Yu, Q.3
Zhong, C.4
Zhang, J.5
-
21
-
-
36549035357
-
Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy
-
[21] Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K., Strømme, M., Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48:26 (2007), 7623–7631.
-
(2007)
Polymer
, vol.48
, Issue.26
, pp. 7623-7631
-
-
Gelin, K.1
Bodin, A.2
Gatenholm, P.3
Mihranyan, A.4
Edwards, K.5
Strømme, M.6
-
22
-
-
67649213948
-
Progress in preparation, processing and applications of polyaniline
-
[22] Bhadra, S., Khastgir, D., Singha, N.K., Lee, J.H., Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34:8 (2009), 783–810.
-
(2009)
Prog. Polym. Sci.
, vol.34
, Issue.8
, pp. 783-810
-
-
Bhadra, S.1
Khastgir, D.2
Singha, N.K.3
Lee, J.H.4
-
24
-
-
84906779744
-
Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review
-
[24] Qazi, T.H., Rai, R., Boccaccini, A.R., Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials 35:33 (2014), 9068–9086.
-
(2014)
Biomaterials
, vol.35
, Issue.33
, pp. 9068-9086
-
-
Qazi, T.H.1
Rai, R.2
Boccaccini, A.R.3
-
25
-
-
80755133417
-
Membrane potential and impedance studies of polyaniline composite membranes: effects of membrane morphology
-
[25] Qaiser, A.A., Hyland, M.M., Patterson, D.A., Membrane potential and impedance studies of polyaniline composite membranes: effects of membrane morphology. J. Membr. Sci. 385–386 (2011), 67–75.
-
(2011)
J. Membr. Sci.
, vol.385-386
, pp. 67-75
-
-
Qaiser, A.A.1
Hyland, M.M.2
Patterson, D.A.3
-
26
-
-
84901684099
-
Biologically derived soft conducting hydrogels using heparin-doped polymer networks
-
[26] Ding, H.J., Zhong, M.J., Kim, Y.J., Pholpabu, P., Balasubramanian, A., Hui, C.M., et al. Biologically derived soft conducting hydrogels using heparin-doped polymer networks. Acs Nano 8:5 (2014), 4348–4357.
-
(2014)
Acs Nano
, vol.8
, Issue.5
, pp. 4348-4357
-
-
Ding, H.J.1
Zhong, M.J.2
Kim, Y.J.3
Pholpabu, P.4
Balasubramanian, A.5
Hui, C.M.6
-
27
-
-
84962022046
-
Conductive properties and mechanism of various polymers doped with carbon nanotube/polyaniline hybrid nanoparticles
-
[27] Tan, H-x, Xu, X-c, Conductive properties and mechanism of various polymers doped with carbon nanotube/polyaniline hybrid nanoparticles. Compos Sci. Technol. 128 (2016), 155–160.
-
(2016)
Compos Sci. Technol.
, vol.128
, pp. 155-160
-
-
Tan, H.-X.1
Xu, X.-C.2
-
28
-
-
84901388451
-
Synthesis and characterisation of nanocellulose-based polyaniline conducting films
-
[28] Liu, D.Y., Sui, G.X., Bhattacharyya, D., Synthesis and characterisation of nanocellulose-based polyaniline conducting films. Compos Sci. Technol. 99 (2014), 31–36.
-
(2014)
Compos Sci. Technol.
, vol.99
, pp. 31-36
-
-
Liu, D.Y.1
Sui, G.X.2
Bhattacharyya, D.3
-
29
-
-
84880886247
-
Nanocellulose electroconductive composites
-
[29] Shi, Z.J., Phillips, G.O., Yang, G., Nanocellulose electroconductive composites. Nanoscale 5:8 (2013), 3194–3201.
-
(2013)
Nanoscale
, vol.5
, Issue.8
, pp. 3194-3201
-
-
Shi, Z.J.1
Phillips, G.O.2
Yang, G.3
-
30
-
-
84901245223
-
Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent
-
[30] Marins, J.A., Soares, B.G., Fraga, M., Muller, D., Barra, G.M.O., Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent. Cellulose 21:3 (2014), 1409–1418.
-
(2014)
Cellulose
, vol.21
, Issue.3
, pp. 1409-1418
-
-
Marins, J.A.1
Soares, B.G.2
Fraga, M.3
Muller, D.4
Barra, G.M.O.5
-
31
-
-
84939604609
-
Effects of water content on preparation and properties of bacterial cellulose/polyaniline composite gel-membranes
-
[31] Yue, L.N., Zheng, Y.D., Luan, J.B., Yu, Y., Xie, Y.J., Wu, J., Effects of water content on preparation and properties of bacterial cellulose/polyaniline composite gel-membranes. Acta Polym. Sin. 9 (2014), 1228–1237.
-
(2014)
Acta Polym. Sin.
, vol.9
, pp. 1228-1237
-
-
Yue, L.N.1
Zheng, Y.D.2
Luan, J.B.3
Yu, Y.4
Xie, Y.J.5
Wu, J.6
-
32
-
-
84979935339
-
Preparation of a carboxymethylated bacterial cellulose/polyaniline composite gel membrane and its characterization
-
[32] Yue, L., Zheng, Y., Xie, Y., Liu, S., Guo, S., Yang, B., et al. Preparation of a carboxymethylated bacterial cellulose/polyaniline composite gel membrane and its characterization. RSC Adv. 6:73 (2016), 68599–68605.
-
(2016)
RSC Adv.
, vol.6
, Issue.73
, pp. 68599-68605
-
-
Yue, L.1
Zheng, Y.2
Xie, Y.3
Liu, S.4
Guo, S.5
Yang, B.6
-
33
-
-
84865044076
-
Proton transfer mechanism in perfluorinated sulfonic acid polytetrafluoroethylene
-
[33] Sun, H., Sun, Z., Wu, Y.H., Proton transfer mechanism in perfluorinated sulfonic acid polytetrafluoroethylene. Int. J. Hydrogen Energy 37:17 (2012), 12821–12826.
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, Issue.17
, pp. 12821-12826
-
-
Sun, H.1
Sun, Z.2
Wu, Y.H.3
-
34
-
-
84898826745
-
Characterization of uncharged and sulfonated porous poly(vinylidene fluoride) membranes and their performance in microbial fuel cells
-
[34] Kim, Y., Shin, S.-H., Chang, I.S., Moon, S.-H., Characterization of uncharged and sulfonated porous poly(vinylidene fluoride) membranes and their performance in microbial fuel cells. J. Membr. Sci. 463 (2014), 205–214.
-
(2014)
J. Membr. Sci.
, vol.463
, pp. 205-214
-
-
Kim, Y.1
Shin, S.-H.2
Chang, I.S.3
Moon, S.-H.4
-
35
-
-
84941084036
-
Proton exchange membranes based on sulfonated poly(arylene ether ketone) containing triazole group for enhanced proton conductivity
-
[35] Nguyen MDat, T., Dang Hai, S., Kim, D., Proton exchange membranes based on sulfonated poly(arylene ether ketone) containing triazole group for enhanced proton conductivity. J. Membr. Sci. 496 (2015), 13–20.
-
(2015)
J. Membr. Sci.
, vol.496
, pp. 13-20
-
-
Nguyen MDat, T.1
Dang Hai, S.2
Kim, D.3
-
36
-
-
84989344404
-
Chemical, microscopic, and microbiological analysis of a functionalized poly-ether-ether-ketone-embedding antibiofilm compounds
-
[36] Montero, J.F.D., Barbosa, L.C.A., Pereira, U.A., Barra, G.M., Fredel, M.C., Benfatti, C.A.M., et al. Chemical, microscopic, and microbiological analysis of a functionalized poly-ether-ether-ketone-embedding antibiofilm compounds. J. Biomed. Mater Res. A 104:12 (2016), 3015–3020.
-
(2016)
J. Biomed. Mater Res. A
, vol.104
, Issue.12
, pp. 3015-3020
-
-
Montero, J.F.D.1
Barbosa, L.C.A.2
Pereira, U.A.3
Barra, G.M.4
Fredel, M.C.5
Benfatti, C.A.M.6
-
37
-
-
84890832151
-
Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation
-
[37] Wu, J., Zheng, Y., Yang, Z., Lin, Q., Qiao, K., Chen, X., et al. Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation. Rsc Adv., 4(8), 2014, 3998.
-
(2014)
Rsc Adv.
, vol.4
, Issue.8
, pp. 3998
-
-
Wu, J.1
Zheng, Y.2
Yang, Z.3
Lin, Q.4
Qiao, K.5
Chen, X.6
-
38
-
-
84863314995
-
Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes
-
[38] Wang, H.H., Zhu, E.W., Yang, J.Z., Zhou, P.P., Sun, D.P., Tang, W.H., Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J. Phys. Chem. C 116:24 (2012), 13013–13019.
-
(2012)
J. Phys. Chem. C
, vol.116
, Issue.24
, pp. 13013-13019
-
-
Wang, H.H.1
Zhu, E.W.2
Yang, J.Z.3
Zhou, P.P.4
Sun, D.P.5
Tang, W.H.6
-
39
-
-
84928920044
-
The sulfonation of polyvinyl chloride: synthesis and characterization for proton conducting membrane applications
-
[39] Allan, J.T.S., Prest, L.E., Easton, E.B., The sulfonation of polyvinyl chloride: synthesis and characterization for proton conducting membrane applications. J. Membr. Sci. 489 (2015), 175–182.
-
(2015)
J. Membr. Sci.
, vol.489
, pp. 175-182
-
-
Allan, J.T.S.1
Prest, L.E.2
Easton, E.B.3
-
40
-
-
84918787562
-
Solution processable octa(aminophenyl)silsesquioxane covalently cross-linked sulfonated polyimides for proton exchange membranes
-
[40] Gong, C., Liang, Y., Qi, Z., Li, H., Wu, Z., Zhang, Z., et al. Solution processable octa(aminophenyl)silsesquioxane covalently cross-linked sulfonated polyimides for proton exchange membranes. J. Membr. Sci. 476 (2015), 364–372.
-
(2015)
J. Membr. Sci.
, vol.476
, pp. 364-372
-
-
Gong, C.1
Liang, Y.2
Qi, Z.3
Li, H.4
Wu, Z.5
Zhang, Z.6
-
41
-
-
84865956984
-
PEG based quasi-solid polymer electrolyte: mechanically supported by networked cellulose
-
[41] Asghar, A., Abdul Samad, Y., Singh Lalia, B., Hashaikeh, R., PEG based quasi-solid polymer electrolyte: mechanically supported by networked cellulose. J. Membr. Sci. 421–422 (2012), 85–90.
-
(2012)
J. Membr. Sci.
, vol.421-422
, pp. 85-90
-
-
Asghar, A.1
Abdul Samad, Y.2
Singh Lalia, B.3
Hashaikeh, R.4
-
42
-
-
77449157674
-
Development of bioactive conducting polymers for neural interfaces
-
[42] Poole-Warren, L., Lovell, N., Baek, S., Green, R., Development of bioactive conducting polymers for neural interfaces. Expert Rev. Med. Devices 7:1 (2010), 35–49.
-
(2010)
Expert Rev. Med. Devices
, vol.7
, Issue.1
, pp. 35-49
-
-
Poole-Warren, L.1
Lovell, N.2
Baek, S.3
Green, R.4
-
43
-
-
84982190128
-
Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors
-
[43] Pandey, G.P., Liu, T., Hancock, C., Li, Y., Sun, X.S., Li, J., Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors. J. Power Sources 328 (2016), 510–519.
-
(2016)
J. Power Sources
, vol.328
, pp. 510-519
-
-
Pandey, G.P.1
Liu, T.2
Hancock, C.3
Li, Y.4
Sun, X.S.5
Li, J.6
-
44
-
-
37149054759
-
Effects of polyaniline chain structures on proton conduction in a PEM host matrix
-
[44] Pei, H., Hong, L., Lee, J.Y., Effects of polyaniline chain structures on proton conduction in a PEM host matrix. J. Membr. Sci. 307:1 (2008), 126–135.
-
(2008)
J. Membr. Sci.
, vol.307
, Issue.1
, pp. 126-135
-
-
Pei, H.1
Hong, L.2
Lee, J.Y.3
-
45
-
-
0035975721
-
A modified free-volume model: correlation of ion-conduction in strongly associating polymeric materials
-
[45] Ramesh, N., Duda, J.L., A modified free-volume model: correlation of ion-conduction in strongly associating polymeric materials. J. Membr. Sci. 191:1–2 (2001), 13–30.
-
(2001)
J. Membr. Sci.
, vol.191
, Issue.1-2
, pp. 13-30
-
-
Ramesh, N.1
Duda, J.L.2
-
46
-
-
84962283456
-
New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells
-
[46] Branco, C.M., Sharma, S., Forte, M.M.D., Steinberger-Wilckens, R., New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells. J. Power Sources 316 (2016), 139–159.
-
(2016)
J. Power Sources
, vol.316
, pp. 139-159
-
-
Branco, C.M.1
Sharma, S.2
Forte, M.M.D.3
Steinberger-Wilckens, R.4
-
47
-
-
80053942848
-
3 nanotubes for organic-dye-sensitized solar cells
-
3 nanotubes for organic-dye-sensitized solar cells. Langmuir 27:20 (2011), 12730–12736.
-
(2011)
Langmuir
, vol.27
, Issue.20
, pp. 12730-12736
-
-
Hara, K.1
Zhao, Z.G.2
Cui, Y.3
Miyauchi, M.4
Miyashita, M.5
Mori, S.6
-
48
-
-
81855218256
-
Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells
-
[48] Kavan, L., Yum, J.H., Nazeeruddin, M.K., Gratzel, M., Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells. Acs Nano 5:11 (2011), 9171–9178.
-
(2011)
Acs Nano
, vol.5
, Issue.11
, pp. 9171-9178
-
-
Kavan, L.1
Yum, J.H.2
Nazeeruddin, M.K.3
Gratzel, M.4
-
49
-
-
85017141862
-
Electrochemical Methodologies in Biomedical Applications
-
Springer US
-
[49] Rao, J.R., Electrochemical Methodologies in Biomedical Applications. 1983, Springer, US.
-
(1983)
-
-
Rao, J.R.1
-
50
-
-
31044434427
-
Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications
-
[50] Li, M., Guo, Y., Wei, Y., MacDiarmid, A.G., Lelkes, P.I., Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:13 (2006), 2705–2715.
-
(2006)
Biomaterials
, vol.27
, Issue.13
, pp. 2705-2715
-
-
Li, M.1
Guo, Y.2
Wei, Y.3
MacDiarmid, A.G.4
Lelkes, P.I.5
|