메뉴 건너뛰기




Volumn 463, Issue , 2014, Pages 205-214

Characterization of uncharged and sulfonated porous poly(vinylidene fluoride) membranes and their performance in microbial fuel cells

Author keywords

Air cathode microbial fuel cell; Electrochemical impedance spectroscopy; Porous ion exchange membrane; Sulfonation; Uncharged porous membrane

Indexed keywords

CATHODES; ELECTRIC PROPERTIES; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; ION EXCHANGE MEMBRANES; OXYGEN PERMEABLE MEMBRANES; SULFONATION;

EID: 84898826745     PISSN: 03767388     EISSN: 18733123     Source Type: Journal    
DOI: 10.1016/j.memsci.2014.03.061     Document Type: Article
Times cited : (62)

References (54)
  • 1
    • 0017697028 scopus 로고
    • Biochemical fuel cell utilizing immobilized cells of clostridium butyricum
    • Karube I., Matsunaga T., Tsuru S., Suzuki S. Biochemical fuel cell utilizing immobilized cells of clostridium butyricum. Biotechnol. Bioeng. 1977, 19:1727-1733.
    • (1977) Biotechnol. Bioeng. , vol.19 , pp. 1727-1733
    • Karube, I.1    Matsunaga, T.2    Tsuru, S.3    Suzuki, S.4
  • 3
    • 33744906766 scopus 로고    scopus 로고
    • Microbial fuel cells: novel microbial physiologies and engineering approaches
    • Lovley D.R. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol. 2006, 17:327-332.
    • (2006) Curr. Opin. Biotechnol. , vol.17 , pp. 327-332
    • Lovley, D.R.1
  • 4
    • 74549151753 scopus 로고    scopus 로고
    • A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
    • Pant D., Van Bogaert G., Diels L., Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101:1533-1543.
    • (2010) Bioresour. Technol. , vol.101 , pp. 1533-1543
    • Pant, D.1    Van Bogaert, G.2    Diels, L.3    Vanbroekhoven, K.4
  • 5
    • 84865283298 scopus 로고    scopus 로고
    • Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether sulfone) membranes
    • Choi T.H., Won Y.-B., Lee J.-W., Shin D.W., Lee Y.M., Kim M., Park H.B. Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether sulfone) membranes. J. Power Sources 2012, 220:269-279.
    • (2012) J. Power Sources , vol.220 , pp. 269-279
    • Choi, T.H.1    Won, Y.-B.2    Lee, J.-W.3    Shin, D.W.4    Lee, Y.M.5    Kim, M.6    Park, H.B.7
  • 6
    • 34248181574 scopus 로고    scopus 로고
    • Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells
    • Logan B., Cheng S., Watson V., Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 2007, 41:3341-3346.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 3341-3346
    • Logan, B.1    Cheng, S.2    Watson, V.3    Estadt, G.4
  • 8
    • 84867628683 scopus 로고    scopus 로고
    • Stainless steel is a promising electrode material for anodes of microbial fuel cells
    • Pocaznoi D., Calmet A., Etcheverry L., Erable B., Bergel A. Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy Environ. Sci. 2012, 5:9645-9652.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 9645-9652
    • Pocaznoi, D.1    Calmet, A.2    Etcheverry, L.3    Erable, B.4    Bergel, A.5
  • 9
    • 84876519385 scopus 로고    scopus 로고
    • Efficient oxygen reduction by a Fe/Co/C/N nano-porous catalyst in neutral media
    • Zhao Y., Watanabe K., Hashimoto K. Efficient oxygen reduction by a Fe/Co/C/N nano-porous catalyst in neutral media. J. Mater. Chem. A 2013, 1:1450-1456.
    • (2013) J. Mater. Chem. A , vol.1 , pp. 1450-1456
    • Zhao, Y.1    Watanabe, K.2    Hashimoto, K.3
  • 10
    • 84875677796 scopus 로고    scopus 로고
    • The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems
    • Flexer V., Chen J., Donose B.C., Sherrell P., Wallace G.G., Keller J. The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy Environ. Sci. 2013, 6:1291-1298.
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1291-1298
    • Flexer, V.1    Chen, J.2    Donose, B.C.3    Sherrell, P.4    Wallace, G.G.5    Keller, J.6
  • 11
    • 33846842443 scopus 로고    scopus 로고
    • Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
    • Kim J.R., Cheng S., Oh S.-E., Logan B.E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 2007, 41:1004-1009.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 1004-1009
    • Kim, J.R.1    Cheng, S.2    Oh, S.-E.3    Logan, B.E.4
  • 12
    • 77953197539 scopus 로고    scopus 로고
    • A fuel cell that runs on water and air
    • Dreizler A.M., Roduner E. A fuel cell that runs on water and air. Energy Environ. Sci. 2010, 3:761-764.
    • (2010) Energy Environ. Sci. , vol.3 , pp. 761-764
    • Dreizler, A.M.1    Roduner, E.2
  • 13
    • 84864224064 scopus 로고    scopus 로고
    • Improved performance of CEA microbial fuel cells with increased reactor size
    • Fan Y., Han S.-K., Liu H. Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ. Sci. 2012, 5:8273-8280.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8273-8280
    • Fan, Y.1    Han, S.-K.2    Liu, H.3
  • 14
    • 33744498908 scopus 로고    scopus 로고
    • A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli
    • Zhang T., Cui C., Chen S., Ai X., Yang H., Shen P., Peng Z. A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem. Commun. 2006, 2257-2259.
    • (2006) Chem. Commun. , pp. 2257-2259
    • Zhang, T.1    Cui, C.2    Chen, S.3    Ai, X.4    Yang, H.5    Shen, P.6    Peng, Z.7
  • 15
    • 33748564008 scopus 로고    scopus 로고
    • Microbial fuel cells-challenges and applications
    • Logan B.E., Regan J.M. Microbial fuel cells-challenges and applications. Environ. Sci. Technol. 2006, 40:5172-5180.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5172-5180
    • Logan, B.E.1    Regan, J.M.2
  • 16
    • 18844451775 scopus 로고    scopus 로고
    • Electricity generation using membrane and salt bridge microbial fuel cells
    • Min B., Cheng S., Logan B.E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 2005, 39:1675-1686.
    • (2005) Water Res. , vol.39 , pp. 1675-1686
    • Min, B.1    Cheng, S.2    Logan, B.E.3
  • 17
    • 0141565121 scopus 로고    scopus 로고
    • A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency
    • Rabaey K., Lissens G., Siciliano S., Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 2003, 25:1531-1535.
    • (2003) Biotechnol. Lett. , vol.25 , pp. 1531-1535
    • Rabaey, K.1    Lissens, G.2    Siciliano, S.3    Verstraete, W.4
  • 18
    • 13844300190 scopus 로고    scopus 로고
    • Microbial fuel cells (MFCs) with interpolymer cation exchange membranes
    • Grzebyk M., Poźniak G. Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep. Purif. Technol. 2005, 41:321-328.
    • (2005) Sep. Purif. Technol. , vol.41 , pp. 321-328
    • Grzebyk, M.1    Poźniak, G.2
  • 20
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: novel biotechnology for energy generation
    • Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23:291-298.
    • (2005) Trends Biotechnol. , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2
  • 22
    • 79952247766 scopus 로고    scopus 로고
    • Preparation of porous ion-exchange membranes (IEMs) and their characterizations
    • Klaysom C., Moon S.-H., Ladewig B.P., Lu G.Q.M., Wang L. Preparation of porous ion-exchange membranes (IEMs) and their characterizations. J. Membr. Sci. 2011, 371:37-44.
    • (2011) J. Membr. Sci. , vol.371 , pp. 37-44
    • Klaysom, C.1    Moon, S.-H.2    Ladewig, B.P.3    Lu, G.Q.M.4    Wang, L.5
  • 23
    • 79955575835 scopus 로고    scopus 로고
    • Preparation of porous composite ion-exchange membranes for desalination application
    • Klaysom C., Marschall R., Moon S.-H., Ladewig B.P., Lu G.Q.M., Wang L. Preparation of porous composite ion-exchange membranes for desalination application. J. Mater. Chem. 2011, 21:7401-7409.
    • (2011) J. Mater. Chem. , vol.21 , pp. 7401-7409
    • Klaysom, C.1    Marschall, R.2    Moon, S.-H.3    Ladewig, B.P.4    Lu, G.Q.M.5    Wang, L.6
  • 24
    • 77951948528 scopus 로고    scopus 로고
    • The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells
    • Zhang X., Cheng S., Huang X., Logan B.E. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells. Energy Environ. Sci. 2010, 3:659-664.
    • (2010) Energy Environ. Sci. , vol.3 , pp. 659-664
    • Zhang, X.1    Cheng, S.2    Huang, X.3    Logan, B.E.4
  • 25
    • 33847228809 scopus 로고    scopus 로고
    • Diversifying biological fuel cell designs by use of nanoporous filters
    • Biffinger J.C., Ray R., Little B., Ringeisen B.R. Diversifying biological fuel cell designs by use of nanoporous filters. Environ. Sci. Technol. 2007, 41:1444-1449.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 1444-1449
    • Biffinger, J.C.1    Ray, R.2    Little, B.3    Ringeisen, B.R.4
  • 26
    • 78649965088 scopus 로고    scopus 로고
    • Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells
    • Yun S.-H., Woo J.-J., Seo S.-J., Wu L., Wu D., Xu T., Moon S.-H. Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells. J. Membr. Sci. 2011, 367:296-305.
    • (2011) J. Membr. Sci. , vol.367 , pp. 296-305
    • Yun, S.-H.1    Woo, J.-J.2    Seo, S.-J.3    Wu, L.4    Wu, D.5    Xu, T.6    Moon, S.-H.7
  • 27
    • 27744434008 scopus 로고    scopus 로고
    • Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries
    • Luo X., Lu Z., Xi J., Wu Z., Zhu W., Chen L., Qiu X. Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries. The Journal of Physical Chemistry B 2005, 109:20310-20314.
    • (2005) The Journal of Physical Chemistry B , vol.109 , pp. 20310-20314
    • Luo, X.1    Lu, Z.2    Xi, J.3    Wu, Z.4    Zhu, W.5    Chen, L.6    Qiu, X.7
  • 28
    • 84870664824 scopus 로고    scopus 로고
    • Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications
    • Seo S.-J., Kim B.-C., Sung K.-W., Shim J., Jeon J.-D., Shin K.-H., Shin S.-H., Yun S.-H., Lee J.-Y., Moon S.-H. Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications. J. Membr. Sci. 2013, 428:17-23.
    • (2013) J. Membr. Sci. , vol.428 , pp. 17-23
    • Seo, S.-J.1    Kim, B.-C.2    Sung, K.-W.3    Shim, J.4    Jeon, J.-D.5    Shin, K.-H.6    Shin, S.-H.7    Yun, S.-H.8    Lee, J.-Y.9    Moon, S.-H.10
  • 29
    • 33344465903 scopus 로고    scopus 로고
    • Increased performance of single-chamber microbial fuel cells using an improved cathode structure
    • Cheng S., Liu H., Logan B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006, 8:489-494.
    • (2006) Electrochem. Commun. , vol.8 , pp. 489-494
    • Cheng, S.1    Liu, H.2    Logan, B.E.3
  • 31
    • 0023996576 scopus 로고
    • The mean free path in air
    • Jennings S.G. The mean free path in air. J.Aerosol Sci. 1988, 19:159-166.
    • (1988) J.Aerosol Sci. , vol.19 , pp. 159-166
    • Jennings, S.G.1
  • 32
    • 7644236656 scopus 로고    scopus 로고
    • Battery separators
    • Arora P., Zhang Z. Battery separators. Chem. Rev. 2004, 104:4419-4462.
    • (2004) Chem. Rev. , vol.104 , pp. 4419-4462
    • Arora, P.1    Zhang, Z.2
  • 34
    • 0028889101 scopus 로고
    • Pervaporation of water-ethanol mixtures through sulfonated polystyrene membranes prepared by plasma graft-polymerization
    • Ihm C.-D., Ihm S.-K. Pervaporation of water-ethanol mixtures through sulfonated polystyrene membranes prepared by plasma graft-polymerization. J. Membr. Sci. 1995, 98:89-96.
    • (1995) J. Membr. Sci. , vol.98 , pp. 89-96
    • Ihm, C.-D.1    Ihm, S.-K.2
  • 35
    • 0037086794 scopus 로고    scopus 로고
    • Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes
    • Wang F., Hickner M., Kim Y.S., Zawodzinski T.A., McGrath J.E. Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J. Membr. Sci. 2002, 197:231-242.
    • (2002) J. Membr. Sci. , vol.197 , pp. 231-242
    • Wang, F.1    Hickner, M.2    Kim, Y.S.3    Zawodzinski, T.A.4    McGrath, J.E.5
  • 36
    • 70249111522 scopus 로고    scopus 로고
    • Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: an overview
    • Sahu A.K., Pitchumani S., Sridhar P., Shukla A.K. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: an overview. Bull. Mater. Sci. 2009, 32:285-294.
    • (2009) Bull. Mater. Sci. , vol.32 , pp. 285-294
    • Sahu, A.K.1    Pitchumani, S.2    Sridhar, P.3    Shukla, A.K.4
  • 38
    • 3242707506 scopus 로고    scopus 로고
    • Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
    • Liu H., Logan B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38:4040-4046.
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 4040-4046
    • Liu, H.1    Logan, B.E.2
  • 39
    • 58649118858 scopus 로고    scopus 로고
    • Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode
    • Kim J.R., Premier G.C., Hawkes F.R., Dinsdale R.M., Guwy A.J. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J. Power Sources 2009, 187:393-399.
    • (2009) J. Power Sources , vol.187 , pp. 393-399
    • Kim, J.R.1    Premier, G.C.2    Hawkes, F.R.3    Dinsdale, R.M.4    Guwy, A.J.5
  • 40
    • 84856743101 scopus 로고    scopus 로고
    • Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells
    • Malvankar N.S., Tuominen M.T., Lovley D.R. Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energy Environ. Sci. 2012, 5:5790-5797.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 5790-5797
    • Malvankar, N.S.1    Tuominen, M.T.2    Lovley, D.R.3
  • 41
    • 36349027640 scopus 로고    scopus 로고
    • Electricity production from twelve monosaccharides using microbial fuel cells
    • Catal T., Li K., Bermek H., Liu H. Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources 2008, 175:196-200.
    • (2008) J. Power Sources , vol.175 , pp. 196-200
    • Catal, T.1    Li, K.2    Bermek, H.3    Liu, H.4
  • 42
    • 0242354123 scopus 로고    scopus 로고
    • Peer reviewed: electrochemical impedance spectroscopy for better electrochemical measurements
    • Park S.-M., Yoo J.-S. Peer reviewed: electrochemical impedance spectroscopy for better electrochemical measurements. Anal. Chem. 2003, 75:455A-461A.
    • (2003) Anal. Chem. , vol.75
    • Park, S.-M.1    Yoo, J.-S.2
  • 43
    • 69249104648 scopus 로고    scopus 로고
    • Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies
    • He Z., Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci. 2009, 2:215-219.
    • (2009) Energy Environ. Sci. , vol.2 , pp. 215-219
    • He, Z.1    Mansfeld, F.2
  • 44
    • 80054691404 scopus 로고    scopus 로고
    • Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH
    • Jung S., Mench M.M., Regan J.M. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH. Environ. Sci. Technol. 2011, 45:9069-9074.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 9069-9074
    • Jung, S.1    Mench, M.M.2    Regan, J.M.3
  • 45
    • 33748549027 scopus 로고    scopus 로고
    • An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy
    • He Z., Wagner N., Minteer S.D., Angenent L.T. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol. 2006, 40:5212-5217.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5212-5217
    • He, Z.1    Wagner, N.2    Minteer, S.D.3    Angenent, L.T.4
  • 46
    • 50049103629 scopus 로고    scopus 로고
    • Impact of initial biofilm growth on the anode impedance of microbial fuel cells
    • Ramasamy R.P., Ren Z., Mench M.M., Regan J.M. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnol. Bioeng. 2008, 101:101-108.
    • (2008) Biotechnol. Bioeng. , vol.101 , pp. 101-108
    • Ramasamy, R.P.1    Ren, Z.2    Mench, M.M.3    Regan, J.M.4
  • 47
    • 34848873134 scopus 로고    scopus 로고
    • A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions
    • You S., Zhao Q., Zhang J., Jiang J., Wan C., Du M., Zhao S. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. J. Power Sources 2007, 173:172-177.
    • (2007) J. Power Sources , vol.173 , pp. 172-177
    • You, S.1    Zhao, Q.2    Zhang, J.3    Jiang, J.4    Wan, C.5    Du, M.6    Zhao, S.7
  • 48
    • 70350550167 scopus 로고    scopus 로고
    • Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells
    • Ramasamy R.P., Gadhamshetty V., Nadeau L.J., Johnson G.R. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells. Biotechnol. Bioeng. 2009, 104:882-891.
    • (2009) Biotechnol. Bioeng. , vol.104 , pp. 882-891
    • Ramasamy, R.P.1    Gadhamshetty, V.2    Nadeau, L.J.3    Johnson, G.R.4
  • 49
    • 7644237552 scopus 로고    scopus 로고
    • Factors governing oxygen reduction in solid oxide fuel cell cathodes
    • Adler S.B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 2004, 104:4791-4844.
    • (2004) Chem. Rev. , vol.104 , pp. 4791-4844
    • Adler, S.B.1
  • 50
    • 0001200670 scopus 로고
    • Oxygen diffusion through silver cathodes for solid oxide fuel cells
    • Van Herle J., McEvoy A.J. Oxygen diffusion through silver cathodes for solid oxide fuel cells. J. Phys. Chem. Solids 1994, 55:339-347.
    • (1994) J. Phys. Chem. Solids , vol.55 , pp. 339-347
    • Van Herle, J.1    McEvoy, A.J.2
  • 51
    • 2442651704 scopus 로고    scopus 로고
    • Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes
    • Xie Z., Holdcroft S. Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes. J. Electroanal. Chem. 2004, 568:247-260.
    • (2004) J. Electroanal. Chem. , vol.568 , pp. 247-260
    • Xie, Z.1    Holdcroft, S.2
  • 52
    • 83455245727 scopus 로고    scopus 로고
    • Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis
    • Bae J.H., Han J.-H., Chung T.D. Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Phys. Chem. Chem. Phys. 2012, 14:448-463.
    • (2012) Phys. Chem. Chem. Phys. , vol.14 , pp. 448-463
    • Bae, J.H.1    Han, J.-H.2    Chung, T.D.3
  • 54
    • 0019583113 scopus 로고
    • Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes
    • Sepa D.B., Vojnovic M.V., Damjanovic A. Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes. Electrochim. Acta 1981, 26:781-793.
    • (1981) Electrochim. Acta , vol.26 , pp. 781-793
    • Sepa, D.B.1    Vojnovic, M.V.2    Damjanovic, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.