-
1
-
-
22544469535
-
Measures on Cantor space
-
E. Akin, Measures on Cantor space, Topology Proc. 24 (1999), 1–34.
-
(1999)
Topology Proc
, vol.24
, pp. 1-34
-
-
Akin, E.1
-
2
-
-
0001608368
-
The algebraic simplicity of certain groups of homeomorphisms, Amer
-
R. D. Anderson, The algebraic simplicity of certain groups of homeomorphisms, Amer. J. Math. 80 (1958), 955–963.
-
(1958)
J. Math
, vol.80
, pp. 955-963
-
-
Anderson, R.D.1
-
4
-
-
26444542503
-
The Rokhlin lemma for homeomor- phisms of a Cantor set
-
S. Bezuglyi, A. Dooley and K. Medynets, The Rokhlin lemma for homeomor- phisms of a Cantor set, Proc. Amer. Math. Soc. 133 (2005), 2957–2964.
-
(2005)
Proc. Amer. Math. Soc
, vol.133
, pp. 2957-2964
-
-
Bezuglyi, S.1
Dooley, A.2
Medynets, K.3
-
5
-
-
17144430610
-
The topological full group of a Cantor minimal system is dense in the full group
-
S. Bezuglyi and J. Kwiatkowski, The topological full group of a Cantor minimal system is dense in the full group, Topol. Methods Nonlinear Anal. 16 (2000), 371–397.
-
(2000)
Topol. Methods Nonlinear Anal
, vol.16
, pp. 371-397
-
-
Bezuglyi, S.1
Kwiatkowski, J.2
-
7
-
-
84974019790
-
Ergodic theory on homogeneous measure algebras
-
Springer, Berlin
-
J. R. Choksi and V. S. Prasad, Ergodic theory on homogeneous measure algebras, in: Measure Theory (Oberwolfach, 1981), Lecture Notes in Math. 945, Springer, Berlin, 1982, 366–408.
-
(1982)
Measure Theory (Oberwolfach, 1981), Lecture Notes in Math
, vol.945
, pp. 366-408
-
-
Choksi, J.R.1
Prasad, V.S.2
-
8
-
-
0000987652
-
On groups of measure preserving transformations, I
-
H. A. Dye, On groups of measure preserving transformations, I, Amer. J. Math. 81 (1959), 119–159.
-
(1959)
Amer. J. Math
, vol.81
, pp. 119-159
-
-
Dye, H.A.1
-
9
-
-
0000573518
-
On groups of measure preserving transformations, II
-
H. A. Dye, On groups of measure preserving transformations, II, Amer. J. Math. 85 (1963), 551–576.
-
(1963)
Amer. J. Math
, vol.85
, pp. 551-576
-
-
Dye, H.A.1
-
10
-
-
51249186804
-
On the simplicity of the full group of ergodic transformations, Israel
-
S. J. Eigen, On the simplicity of the full group of ergodic transformations, Israel J. Math. 40 (1981), 345–349.
-
(1981)
J. Math
, vol.40
, pp. 345-349
-
-
Eigen, S.J.1
-
11
-
-
0040408045
-
The group of measure-preserving transformations of [0, 1] has no outer automorphisms
-
S. J. Eigen, The group of measure-preserving transformations of [0, 1] has no outer automorphisms, Math. Ann. 259 (1982), 259–270.
-
(1982)
Math. Ann
, vol.259
, pp. 259-270
-
-
Eigen, S.J.1
-
12
-
-
51249181932
-
Le groupe des transformations de [0, 1] qui préservent la mesure de Lebesgue est un groupe simple, Israel
-
A. Fathi, Le groupe des transformations de [0, 1] qui préservent la mesure de Lebesgue est un groupe simple, Israel J. Math. 29 (1978), 302–308.
-
(1978)
J. Math
, vol.29
, pp. 302-308
-
-
Fathi, A.1
-
13
-
-
85021150279
-
-
Measure Algebras, Torres Fremlin
-
D. Fremlin, Measure Theory, Vol. 3. Measure Algebras, Torres Fremlin, 2002.
-
(2002)
Measure Theory
, vol.3
-
-
Fremlin, D.1
-
14
-
-
0001635719
-
Full groups of Cantor minimal systems
-
T. Giordano, I. Putnam and C. Skau, Full groups of Cantor minimal systems, Israel J. Math. 111 (1999), 285–320.
-
(1999)
Israel J. Math
, vol.111
, pp. 285-320
-
-
Giordano, T.1
Putnam, I.2
Skau, C.3
-
15
-
-
0002885105
-
Weak orbit equivalence of Cantor minimal systems
-
E. Glasner and B. Weiss, Weak orbit equivalence of Cantor minimal systems, Internat. J. Math. 6 (1995), 559–579.
-
(1995)
Internat. J. Math
, vol.6
, pp. 559-579
-
-
Glasner, E.1
Weiss, B.2
-
16
-
-
32844462206
-
Some remarks on topological full groups of Cantor minimal systems
-
H. Matui, Some remarks on topological full groups of Cantor minimal systems, J. Math. 17 (2006), 231–251.
-
(2006)
J. Math
, vol.17
, pp. 231-251
-
-
Matui, H.1
-
17
-
-
34250172705
-
On approximation of homeomorphisms of a Cantor set
-
K. Medynets, On approximation of homeomorphisms of a Cantor set, Fund. Math. 194 (2007), 1–13.
-
(2007)
Fund. Math
, vol.194
, pp. 1-13
-
-
Medynets, K.1
-
18
-
-
30344476419
-
Cantor aperiodic systems and Bratteli diagrams
-
K. Medynets, Cantor aperiodic systems and Bratteli diagrams, C. R. Math. Acad. Sci. Paris 342 (2006), 43–46.
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.342
, pp. 43-46
-
-
Medynets, K.1
-
19
-
-
38849133739
-
-
Ph.D. thesis, Univ. of California, Berkeley
-
B. Miller, Full groups, classification, and equivalence relations, Ph.D. thesis, Univ. of California, Berkeley, 2004.
-
(2004)
Full Groups, Classification, and Equivalence Relations
-
-
Miller, B.1
-
20
-
-
77950639460
-
Isomorphism of Borel full groups
-
B. Miller and C. Rosendal, Isomorphism of Borel full groups, Proc. Amer. Math. Soc. 135 (2007), 517–522.
-
(2007)
Proc. Amer. Math. Soc
, vol.135
, pp. 517-522
-
-
Miller, B.1
Rosendal, C.2
-
21
-
-
33644674084
-
Representation of transformations preserving the Lebesgue measure, in the form of a product of periodic transformations
-
(in Russian)
-
V. V. Ryzhikov, Representation of transformations preserving the Lebesgue measure, in the form of a product of periodic transformations, Mat. Zametki 38 (1985), 860–865 (in Russian).
-
(1985)
Mat. Zametki
, vol.38
, pp. 860-865
-
-
Ryzhikov, V.V.1
-
22
-
-
34250077045
-
Factorization of an automorphism of a full Boolean algebra into the product of three involutions
-
79–84, 159 (in Russian); English transl: Math. Notes 54 (1993)
-
V. V. Ryzhikov, Factorization of an automorphism of a full Boolean algebra into the product of three involutions, Mat. Zametki 54 (1993), no. 2, 79–84, 159 (in Russian); English transl: Math. Notes 54 (1993), 821–824 (1994).
-
(1993)
Mat. Zametki
, vol.54
, Issue.2
, pp. 821-824
-
-
Ryzhikov, V.V.1
|