-
1
-
-
34250211911
-
Topologies on the group of Borel automorphisms of a standard Borel space
-
S. Bezuglyi, A. H. Dooley, and J. Kwiatkowski, Topologies on the group of Borel automorphisms of a standard Borel space, Topol. Methods Nonlinear Anal. 27 (2006), 333-385.
-
(2006)
Topol. Methods Nonlinear Anal
, vol.27
, pp. 333-385
-
-
Bezuglyi, S.1
Dooley, A.H.2
Kwiatkowski, J.3
-
2
-
-
34250179980
-
-
S. Bezuglyi, A. H. Dooley, and J. Kwiatkowski, Topologies on the group of homeomorphisms of a Cantor set, ibid, 27 (2006), 299-331.
-
S. Bezuglyi, A. H. Dooley, and J. Kwiatkowski, Topologies on the group of homeomorphisms of a Cantor set, ibid, 27 (2006), 299-331.
-
-
-
-
3
-
-
26444542503
-
The Rokhlin lemma for homeomorphisms of a Cantor set
-
S. Bezuglyi, A. H. Dooley, and K. Medynets, The Rokhlin lemma for homeomorphisms of a Cantor set, Proc. Amer. Math. Soc. 133 (2005), 2957-2964.
-
(2005)
Proc. Amer. Math. Soc
, vol.133
, pp. 2957-2964
-
-
Bezuglyi, S.1
Dooley, A.H.2
Medynets, K.3
-
4
-
-
17144430610
-
The topological full group of a Cantor minimal system is dense in the full group
-
S. Bezuglyi and J. Kwiatkowski, The topological full group of a Cantor minimal system is dense in the full group, Topol. Methods Nonlinear Anal. 16 (2000), 371-397.
-
(2000)
Topol. Methods Nonlinear Anal
, vol.16
, pp. 371-397
-
-
Bezuglyi, S.1
Kwiatkowski, J.2
-
5
-
-
34250201983
-
-
Contemp. Math. 385, Amer. Math. Soc
-
S. Bezuglyi, J. Kwiatkowski, and K. Medynets, Approximation in ergodic theory, Borel, and Cantor dynamics, in: Contemp. Math. 385, Amer. Math. Soc., 2005, 39-64.
-
(2005)
Approximation in ergodic theory, Borel, and Cantor dynamics
, pp. 39-64
-
-
Bezuglyi, S.1
Kwiatkowski, J.2
Medynets, K.3
-
6
-
-
17144379249
-
Smooth automorphisms and path-connectedness in Borel dynamics
-
S. Bezuglyi and K. Medynets, Smooth automorphisms and path-connectedness in Borel dynamics, Indag. Math. 15 (2004), 453-468.
-
(2004)
Indag. Math
, vol.15
, pp. 453-468
-
-
Bezuglyi, S.1
Medynets, K.2
-
8
-
-
0001635719
-
Full groups of Cantor minimal systems
-
T. Giordano, I. Putnam, and C. Skau, Full groups of Cantor minimal systems, Israel J. Math. 111 (1999), 285-320.
-
(1999)
Israel J. Math
, vol.111
, pp. 285-320
-
-
Giordano, T.1
Putnam, I.2
Skau, C.3
-
9
-
-
34250220426
-
-
E. Glasner and J. King, A zero-one law for dynamical properties, in: Topological Dynamics and Applications (A in honor of Robert Ellis), Contemp. Math. 215, Amer. Math. Soc., 1998, 215-242.
-
E. Glasner and J. King, A zero-one law for dynamical properties, in: Topological Dynamics and Applications (A volume in honor of Robert Ellis), Contemp. Math. 215, Amer. Math. Soc., 1998, 215-242.
-
-
-
-
10
-
-
0035649136
-
The topological Rohlin property and topological entropy
-
E. Glasner and B. Weiss, The topological Rohlin property and topological entropy, Amer. J. Math. 123 (2001), 1055-1070.
-
(2001)
Amer. J. Math
, vol.123
, pp. 1055-1070
-
-
Glasner, E.1
Weiss, B.2
-
11
-
-
0002546194
-
Approximation theories for measure preserving transformations
-
P. Halmos, Approximation theories for measure preserving transformations, Trans. Amer. Math. Soc. 55 (1944), 1-18.
-
(1944)
Trans. Amer. Math. Soc
, vol.55
, pp. 1-18
-
-
Halmos, P.1
-
14
-
-
0037581852
-
Notion d'homogénéité des homéomorphies
-
B. Knaster et M. Reichbach, Notion d'homogénéité des homéomorphies, Fund. Math. 40 (1953), 180-193.
-
(1953)
Fund. Math
, vol.40
, pp. 180-193
-
-
Knaster, B.1
Reichbach, M.2
-
15
-
-
34250172870
-
Dimension and infinitesimal groups of Cantor minimal systems
-
J. Kwiatkowski and M. Wata, Dimension and infinitesimal groups of Cantor minimal systems, Topol. Methods Nonlinear Anal. 23 (2004), 161-202.
-
(2004)
Topol. Methods Nonlinear Anal
, vol.23
, pp. 161-202
-
-
Kwiatkowski, J.1
Wata, M.2
-
16
-
-
30344476419
-
Cantor aperiodic systems and Bratteli diagrams
-
K. Medynets, Cantor aperiodic systems and Bratteli diagrams, C. R. Math. Acad. Sci. Paris 342 (2006), 43-46.
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.342
, pp. 43-46
-
-
Medynets, K.1
-
19
-
-
34250166256
-
-
V. A. Rokhlin, Selected topics from the metric theory of dynamical systems, Uspekhi Mat. Nauk 4 (1949), no. 2, 57-128 (in Russian); English transl.: Amer. Math. Soc. Transl. 49 (1966), 171-240.
-
V. A. Rokhlin, Selected topics from the metric theory of dynamical systems, Uspekhi Mat. Nauk 4 (1949), no. 2, 57-128 (in Russian); English transl.: Amer. Math. Soc. Transl. 49 (1966), 171-240.
-
-
-
-
20
-
-
0000436023
-
-
Contemp. Math. 26, Amer. Math. Soc
-
B. Weiss, Measurable dynamics, in: Contemp. Math. 26, Amer. Math. Soc., 1984, 395-421.
-
(1984)
Measurable dynamics
, pp. 395-421
-
-
Weiss, B.1
|