-
1
-
-
85087538042
-
Dynamics of topologically generic homeomorphisms
-
[AHK]. MR1980335 (2004j:37024)
-
[AHK] E. Akin, M. Hurley, J. Kennedy, Dynamics of topologically generic homeomorphisms, Memoirs of the AMS, 164, (2003). MR1980335 (2004j:37024)
-
(2003)
Memoirs of the AMS
, vol.164
-
-
Akin, E.1
Hurley, M.2
Kennedy, J.3
-
5
-
-
17144430610
-
The topological full group of a Cantor minimal system is dense in the full group
-
[BK1]. MR1820514 (2002b:37012)
-
[BK1] S. Bezuglyi, J. Kwiatkowski, The topological full group of a Cantor minimal system is dense in the full group, Topological Methods in Nonlinear Analysis, 16 (2000), 371-397. MR1820514 (2002b:37012)
-
(2000)
Topological Methods in Nonlinear Analysis
, vol.16
, pp. 371-397
-
-
Bezuglyi, S.1
Kwiatkowski, J.2
-
6
-
-
17144374629
-
Topologies on full groups and normalizes of Cantor minimal systems
-
[BK2]. MR1949801 (2003j:37014)
-
[BK2] S. Bezuglyi, J. Kwiatkowski, Topologies on full groups and normalizes of Cantor minimal systems, Math. Physics, Analysis, and Geometry, 9 (2002), No. 3, 1-10. MR1949801 (2003j:37014)
-
(2002)
Math. Physics, Analysis, and Geometry
, vol.9
, Issue.3
, pp. 1-10
-
-
Bezuglyi, S.1
Kwiatkowski, J.2
-
7
-
-
84966221443
-
Hyperfiniteness and the Halmos-Rohlin theorem for nonsingular abelian actions
-
[FL]. MR0409764 (53:13516)
-
[FL] J. Feldman, D. Lind, Hyperfiniteness and the Halmos-Rohlin theorem for nonsingular abelian actions, Proc. Amer. Math. Soc., 55 (1976), 339-344. MR0409764 (53:13516)
-
(1976)
Proc. Amer. Math. Soc.
, vol.55
, pp. 339-344
-
-
Feldman, J.1
Lind, D.2
-
8
-
-
0011909782
-
Multiple Rokhlin tower theorem: A simple proof
-
[EP]. MR1604573 (99h:28032)
-
[EP] S.J. Eigen, V.S. Prasad, Multiple Rokhlin tower theorem: a simple proof, New York J. Math., 3A (1997(98)), 11-14. MR1604573 (99h:28032)
-
(1997)
New York J. Math.
, vol.3 A
, pp. 11-14
-
-
Eigen, S.J.1
Prasad, V.S.2
-
9
-
-
1842498565
-
A zero-one law for dynamical properties
-
[GK]. MR603201 (99d:28039)
-
[GK] E. Glasner, J. King, A zero-one law for dynamical properties, Topological Dynamics and Applications, Contemp. Math., 215 (1998), 215-242. MR603201 (99d:28039)
-
(1998)
Topological Dynamics and Applications, Contemp. Math.
, vol.215
, pp. 215-242
-
-
Glasner, E.1
King, J.2
-
10
-
-
0035649136
-
The topological Rohlin property and topological entropy
-
[GW]. MR1867311 (2002h:37025)
-
[GW] E. Glasner, B. Weiss, The topological Rohlin property and topological entropy, Amer. J. Math., 123 (2001), 1055 - 1070. MR1867311 (2002h:37025)
-
(2001)
Amer. J. Math.
, vol.123
, pp. 1055-1070
-
-
Glasner, E.1
Weiss, B.2
-
11
-
-
26444580952
-
An e-free Rokhlin lemma
-
[LW]. MR0684243 (84e:28021)
-
[LW] E. Lehrer, B. Weiss, An e-free Rokhlin lemma, Erg. Th. Dyn. Syst., 2 (1982), 45-48. MR0684243 (84e:28021)
-
(1982)
Erg. Th. Dyn. Syst.
, vol.2
, pp. 45-48
-
-
Lehrer, E.1
Weiss, B.2
-
12
-
-
84966235302
-
Ergodic theory of amenable group actions: I. Rohlin lemma
-
[OW]. MR0551753 (80j:28031)
-
[OW] D. Ornstein, B. Weiss, Ergodic theory of amenable group actions: I. Rohlin lemma, Bull. Amer. Math. Soc., 2 (1980), 161-164. MR0551753 (80j:28031)
-
(1980)
Bull. Amer. Math. Soc.
, vol.2
, pp. 161-164
-
-
Ornstein, D.1
Weiss, B.2
-
13
-
-
0008577530
-
Selected topics from the metric theory of dynamical systems
-
[R]. MR030710 (11:40b)
-
[R] V.A. Rokhlin, Selected topics from the metric theory of dynamical systems (Russian), Uspehi Matem. Nauk (N.S.), 4 (1949), no. 2, 57-128. MR030710 (11:40b)
-
(1949)
Uspehi Matem. Nauk (N.S.)
, vol.4
, Issue.2
, pp. 57-128
-
-
Rokhlin, V.A.1
|