메뉴 건너뛰기




Volumn 85, Issue 1, 2017, Pages 61-83

Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study

Author keywords

Cross validation; eigenfunctions; eigenvalues; functional linear model; functional partial least squares; functional principal components

Indexed keywords


EID: 85016999036     PISSN: 03067734     EISSN: 17515823     Source Type: Journal    
DOI: 10.1111/insr.12116     Document Type: Article
Times cited : (78)

References (43)
  • 1
    • 78650523483 scopus 로고    scopus 로고
    • Using basis expansions for estimating functional PLS regression applications with chemometric data
    • Aguilera A. M., Escabias M., Preda C. & Saporta G. (2010). Using basis expansions for estimating functional PLS regression applications with chemometric data. Chemom. Intell. Lab. Syst., 104, 289–305.
    • (2010) Chemom. Intell. Lab. Syst. , vol.104 , pp. 289-305
    • Aguilera, A.M.1    Escabias, M.2    Preda, C.3    Saporta, G.4
  • 2
    • 0031153750 scopus 로고    scopus 로고
    • An approximated principal component prediction model for continuous-time stochastic processes
    • Aguilera A., Ocaña F. A. & Valderrama M. J. (1997). An approximated principal component prediction model for continuous-time stochastic processes. Appl. Stochastic Models Data Anal., 13, 61–72.
    • (1997) Appl. Stochastic Models Data Anal. , vol.13 , pp. 61-72
    • Aguilera, A.1    Ocaña, F.A.2    Valderrama, M.J.3
  • 3
    • 33847349358 scopus 로고    scopus 로고
    • Prediction in functional linear regression
    • Cai T. T. & Hall P. (2006). Prediction in functional linear regression. Ann. Statist., 34, 2159–2179.
    • (2006) Ann. Statist. , vol.34 , pp. 2159-2179
    • Cai, T.T.1    Hall, P.2
  • 4
    • 65349171811 scopus 로고    scopus 로고
    • Smoothing splines estimators for functional linear regression
    • Crambes C., Kneip A. & Sarda P. (2009). Smoothing splines estimators for functional linear regression. Ann. Statist., 37, 35–72.
    • (2009) Ann. Statist. , vol.37 , pp. 35-72
    • Crambes, C.1    Kneip, A.2    Sarda, P.3
  • 5
    • 0038784362 scopus 로고    scopus 로고
    • Testing hypotheses in the functional linear model
    • Cardot H., Ferraty F., Mas A. & Sarda P. (2003). Testing hypotheses in the functional linear model. Scand. J. Stat., 30, 241–255.
    • (2003) Scand. J. Stat. , vol.30 , pp. 241-255
    • Cardot, H.1    Ferraty, F.2    Mas, A.3    Sarda, P.4
  • 7
    • 0041459525 scopus 로고    scopus 로고
    • Spline estimators for the functional linear model
    • Cardot H., Ferraty F. & Sarda P. (2003). Spline estimators for the functional linear model. Stat. Sin., 13, 571–591.
    • (2003) Stat. Sin. , vol.13 , pp. 571-591
    • Cardot, H.1    Ferraty, F.2    Sarda, P.3
  • 8
    • 1642405059 scopus 로고    scopus 로고
    • Testing for no effects in functional linear regression models, some computational approaches
    • Cardot H., Goia A. & Sarda P. (2004). Testing for no effects in functional linear regression models, some computational approaches. Commun. Stat. Simul. Comput., 33, 179–199.
    • (2004) Commun. Stat. Simul. Comput. , vol.33 , pp. 179-199
    • Cardot, H.1    Goia, A.2    Sarda, P.3
  • 9
    • 70449532455 scopus 로고    scopus 로고
    • Thresholding projection estimators in functional linear models
    • Cardot H. & Johannes J. (2010). Thresholding projection estimators in functional linear models. J. Multivariate Anal, 101, 395–408.
    • (2010) J. Multivariate Anal , vol.101 , pp. 395-408
    • Cardot, H.1    Johannes, J.2
  • 11
    • 84875436072 scopus 로고    scopus 로고
    • Functional linear regression
    • In, Ferraty F., &, Romain Y., (eds),, Oxford Univ. Press, Oxford
    • Cardot H. & Sarda P. 2011. Functional linear regression. In The Oxford Handbook of Functional Data Analysis, Ferraty F. & Romain Y. (eds), Oxford Univ. Press: Oxford.
    • (2011) The Oxford Handbook of Functional Data Analysis
    • Cardot, H.1    Sarda, P.2
  • 12
    • 34247400715 scopus 로고    scopus 로고
    • Diagnostics for functional regression via residual processes
    • Chiou J. M. & Müller H. G. (2007). Diagnostics for functional regression via residual processes. Comput. Stat. Data Anal., 51, 4849–4863.
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 4849-4863
    • Chiou, J.M.1    Müller, H.G.2
  • 13
    • 84984329774 scopus 로고
    • PLS fits closer than PCR
    • de Jong S. (1993). PLS fits closer than PCR. J. Chemom., 7, 551–557.
    • (1993) J. Chemom. , vol.7 , pp. 551-557
    • de Jong, S.1
  • 14
    • 84870678371 scopus 로고    scopus 로고
    • Methodology and theory for partial least squares applied to functional data
    • Delaigle A. & Hall P. (2012). Methodology and theory for partial least squares applied to functional data. Ann. Statist., 40, 322–352.
    • (2012) Ann. Statist. , vol.40 , pp. 322-352
    • Delaigle, A.1    Hall, P.2
  • 16
    • 70449528770 scopus 로고    scopus 로고
    • Measures of influence for the functional linear model with scalar response
    • Febrero-Bande M., Galeano P. & González-Manteiga W. (2010). Measures of influence for the functional linear model with scalar response. J. Multivariate Anal., 101, 327–339.
    • (2010) J. Multivariate Anal. , vol.101 , pp. 327-339
    • Febrero-Bande, M.1    Galeano, P.2    González-Manteiga, W.3
  • 17
    • 84877924931 scopus 로고    scopus 로고
    • Generalized additive models for functional data
    • Febrero-Bande M. & González-Manteiga W. (2013). Generalized additive models for functional data. Test, 22, 278–292.
    • (2013) Test , vol.22 , pp. 278-292
    • Febrero-Bande, M.1    González-Manteiga, W.2
  • 22
    • 33645039219 scopus 로고    scopus 로고
    • On properties of functional principal components analysis
    • Hall P. & Hosseini-Nasab M. (2006). On properties of functional principal components analysis. J. R. Stat. Soc., Series B, 68, 109–126.
    • (2006) J. R. Stat. Soc., Series B , vol.68 , pp. 109-126
    • Hall, P.1    Hosseini-Nasab, M.2
  • 23
    • 35348874516 scopus 로고    scopus 로고
    • Methodology and convergence rates for functional linear regression
    • Hall P. & Horowitz J. L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist., 35, 70–91.
    • (2007) Ann. Statist. , vol.35 , pp. 70-91
    • Hall, P.1    Horowitz, J.L.2
  • 24
    • 0000467952 scopus 로고
    • A discussion of “A statistical view of some chemometrics regression tools” by i. E. Frank and J. H. Friedman
    • Hastie T. & Mallows C. (1993). A discussion of “A statistical view of some chemometrics regression tools” by i. E. Frank and J. H. Friedman. Technometrics, 35, 140–143.
    • (1993) Technometrics , vol.35 , pp. 140-143
    • Hastie, T.1    Mallows, C.2
  • 26
    • 84863461799 scopus 로고    scopus 로고
    • Detecting changes in functional linear models
    • Horváth L. & Reeder R. (2012). Detecting changes in functional linear models. J. Multivariate Anal., 111, 310–334.
    • (2012) J. Multivariate Anal. , vol.111 , pp. 310-334
    • Horváth, L.1    Reeder, R.2
  • 27
    • 84888322484 scopus 로고    scopus 로고
    • A test of significance in functional quadratic regression
    • Horváth L. & Reeder R. (2013). A test of significance in functional quadratic regression. Bernoulli, 19, 2120–2151.
    • (2013) Bernoulli , vol.19 , pp. 2120-2151
    • Horváth, L.1    Reeder, R.2
  • 28
    • 84938973772 scopus 로고    scopus 로고
    • An introduction to functional data analysis and a principal component approach for testing the equality of mean curves
    • Horváth L. & Rice G. (2015). An introduction to functional data analysis and a principal component approach for testing the equality of mean curves. Rev. Mat. Complut., 28, 505–548.
    • (2015) Rev. Mat. Complut. , vol.28 , pp. 505-548
    • Horváth, L.1    Rice, G.2
  • 29
    • 0036020889 scopus 로고    scopus 로고
    • Generalized linear models with functional predictors
    • James G. M. (2002). Generalized linear models with functional predictors. J. R. Stat. Soc., Ser. B, 64, 411–432.
    • (2002) J. R. Stat. Soc., Ser. B , vol.64 , pp. 411-432
    • James, G.M.1
  • 30
    • 69049090897 scopus 로고    scopus 로고
    • Functional linear regression that's interpretable
    • James G., Wang J. & Zhu J. (2009). Functional linear regression that's interpretable. Ann. Statist., 37, 2083–2108.
    • (2009) Ann. Statist. , vol.37 , pp. 2083-2108
    • James, G.1    Wang, J.2    Zhu, J.3
  • 31
    • 79960116378 scopus 로고    scopus 로고
    • The degrees of freedom of partial least squares regression
    • Krämer N. & Sugiyama M. (2011). The degrees of freedom of partial least squares regression. J. Am. Stat. Assoc., 106, 697–705.
    • (2011) J. Am. Stat. Assoc. , vol.106 , pp. 697-705
    • Krämer, N.1    Sugiyama, M.2
  • 32
    • 34548839871 scopus 로고    scopus 로고
    • On rates of convergence in functional linear regression
    • Li Y. & Hsing T. (2007). On rates of convergence in functional linear regression. J. Multivariate Anal., 98, 1782–1804.
    • (2007) J. Multivariate Anal. , vol.98 , pp. 1782-1804
    • Li, Y.1    Hsing, T.2
  • 33
    • 0345647758 scopus 로고    scopus 로고
    • Generalized linear regression on sampled signals with penalized likelihood
    • In, Forcina A., Marchetti G. M., Hatzinger R., &, Galmacci G., (eds),, Statistical Modelling Society, Orvietto
    • Marx B. D. & Eilers P. H. 1996. Generalized linear regression on sampled signals with penalized likelihood. In Statistical Modelling, Proceedings of the 11th International Workshop on Statistical Modelling, Forcina A., Marchetti G. M., Hatzinger R. & Galmacci G. (eds), Statistical Modelling Society: Orvietto.
    • (1996) Statistical Modelling, Proceedings of the 11th International Workshop on Statistical Modelling
    • Marx, B.D.1    Eilers, P.H.2
  • 34
    • 84888346728 scopus 로고    scopus 로고
    • Linear processes for functional data
    • In, Ferraty F., &, Romain Y., (eds),, Oxford Univ. Press, Oxford
    • Mas A. & Pumo B. 2011. Linear processes for functional data. In The Oxford Handbook of Functional Data Analysis, Ferraty F. & Romain Y. (eds), Oxford Univ. Press: Oxford.
    • (2011) The Oxford Handbook of Functional Data Analysis
    • Mas, A.1    Pumo, B.2
  • 35
    • 70349340213 scopus 로고    scopus 로고
    • Functional additive models
    • Müller H-G. & Yao F. (2008). Functional additive models. J. Am. Stat. Assoc., 103, 426–437.
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 426-437
    • Müller, H.-G.1    Yao, F.2
  • 36
    • 19744372814 scopus 로고    scopus 로고
    • Generalized functional linear models
    • Müller H-G. & Stadtmüller U. (2005). Generalized functional linear models. Ann. Statist., 33, 774–805.
    • (2005) Ann. Statist. , vol.33 , pp. 774-805
    • Müller, H.-G.1    Stadtmüller, U.2
  • 38
    • 10144244015 scopus 로고    scopus 로고
    • PLS regression on a stochastic process
    • Preda C. & Saporta G. (2005). PLS regression on a stochastic process. Comput. Stat. Data Anal., 48, 149–158.
    • (2005) Comput. Stat. Data Anal. , vol.48 , pp. 149-158
    • Preda, C.1    Saporta, G.2
  • 41
    • 35348906983 scopus 로고    scopus 로고
    • Functional principal component regression and functional partial least squares
    • Reiss P. T. & Ogden R. T. (2007). Functional principal component regression and functional partial least squares. J. Am. Stat. Assoc., 102, 984–996.
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 984-996
    • Reiss, P.T.1    Ogden, R.T.2
  • 42
    • 77249159873 scopus 로고    scopus 로고
    • Functional quadratic regression
    • Yao F. & Müller H-G. (2010). Functional quadratic regression. Biometrika, 97, 49–64.
    • (2010) Biometrika , vol.97 , pp. 49-64
    • Yao, F.1    Müller, H.-G.2
  • 43
    • 19744369661 scopus 로고    scopus 로고
    • Functional linear regression analysis for longitudinal data
    • Yao F., Müller H-G. & Wang J-L. (2005). Functional linear regression analysis for longitudinal data. Ann. Statist., 33, 2873–2903.
    • (2005) Ann. Statist. , vol.33 , pp. 2873-2903
    • Yao, F.1    Müller, H.-G.2    Wang, J.-L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.