메뉴 건너뛰기




Volumn , Issue , 2016, Pages 219-224

Don't count, predict! An automatic approach to learning sentiment lexicons for short text

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC APPROACHES; DATA VOLUME; MULTIPLE LANGUAGES; NEURAL NETWORK METHOD; SENTIMENT LEXICONS; SHORT TEXTS;

EID: 85016571539     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/p16-2036     Document Type: Conference Paper
Times cited : (67)

References (29)
  • 2
    • 85034054192 scopus 로고    scopus 로고
    • Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining
    • Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. 2010. Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of LREC, volume 10, pages 2200- 2204.
    • (2010) Proceedings of LREC , vol.10 , pp. 2200-2204
    • Baccianella, S.1    Esuli, A.2    Sebastiani, F.3
  • 3
    • 84906930943 scopus 로고    scopus 로고
    • Don't count, predict! A systematic comparison of context-counting vs context-predicting semantic vectors
    • Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of ACL, pages 238-247.
    • (2014) Proceedings of ACL , pp. 238-247
    • Baroni, M.1    Dinu, G.2    Kruszewski, G.3
  • 4
    • 84949772724 scopus 로고    scopus 로고
    • Positive, negative, or neutral: Learning an expanded opinion lexicon from emoticon-annotated tweets
    • Felipe Bravo-Marquez, Eibe Frank, and Bernhard Pfahringer. 2015. Positive, negative, or neutral: learning an expanded opinion lexicon from emoticon-annotated tweets. In Proceedings of IJCAI, pages 1229-1235.
    • (2015) Proceedings of IJCAI , pp. 1229-1235
    • Bravo-Marquez, F.1    Frank, E.2    Pfahringer, B.3
  • 5
    • 85031789656 scopus 로고    scopus 로고
    • Sentiwordnet: A publicly available lexical resource for opinion mining
    • Andrea Esuli and Fabrizio Sebastiani. 2006. Sentiwordnet: A publicly available lexical resource for opinion mining. In Proceedings of LREC, volume 6, pages 417-422.
    • (2006) Proceedings of LREC , vol.6 , pp. 417-422
    • Esuli, A.1    Sebastiani, F.2
  • 8
    • 78650122641 scopus 로고    scopus 로고
    • Twitter sentiment classification using distant supervision
    • Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1:12.
    • (2009) CS224N Project Report, Stanford , vol.1 , pp. 12
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 10
    • 12244305149 scopus 로고    scopus 로고
    • Mining and summarizing customer reviews
    • Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In Proceedings of KDD, KDD '04, pages 168-177.
    • (2004) Proceedings of KDD, KDD '04 , pp. 168-177
    • Hu, M.1    Liu, B.2
  • 11
    • 84906922163 scopus 로고    scopus 로고
    • A convolutional neural network for modelling sentences
    • Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for modelling sentences. In Proceedings of ACL, pages 655-665.
    • (2014) Proceedings of ACL , pp. 655-665
    • Kalchbrenner, N.1    Grefenstette, E.2    Blunsom, P.3
  • 14
    • 84910111413 scopus 로고    scopus 로고
    • Nrc-Canada: Building the state-ofthe- art in sentiment analysis of tweets
    • June
    • Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. 2013. Nrc-canada: Building the state-ofthe- art in sentiment analysis of tweets. In Proceedings of SemEval-2013, June.
    • (2013) Proceedings of SemEval-2013
    • Mohammad, S.M.1    Kiritchenko, S.2    Zhu, X.3
  • 16
    • 84957540556 scopus 로고    scopus 로고
    • Astd: Arabic sentiment tweets dataset
    • Mahmoud Nabil, Mohamed Aly, and Amir F Atiya. 2015. Astd: Arabic sentiment tweets dataset. In Proceedings of EMNLP, pages 2515-2519.
    • (2015) Proceedings of EMNLP , pp. 2515-2519
    • Nabil, M.1    Aly, M.2    Atiya, A.F.3
  • 19
    • 85007275345 scopus 로고    scopus 로고
    • Context-sensitive twitter sentiment classification using neural network
    • Yafeng Ren, Yue Zhang, Meishan Zhang, and Donghong Ji. 2016a. Context-sensitive twitter sentiment classification using neural network. In Proceedings of AAAI.
    • (2016) Proceedings of AAAI
    • Ren, Y.1    Zhang, Y.2    Zhang, M.3    Ji, D.4
  • 20
    • 85007154204 scopus 로고    scopus 로고
    • Improving twitter sentiment classification using topic-enriched multi-prototype word embeddings
    • Yafeng Ren, Yue Zhang, Meishan Zhang, and Donghong Ji. 2016b. Improving twitter sentiment classification using topic-enriched multi-prototype word embeddings. In Proceedings of AAAI.
    • (2016) Proceedings of AAAI
    • Ren, Y.1    Zhang, Y.2    Zhang, M.3    Ji, D.4
  • 21
    • 84958171534 scopus 로고    scopus 로고
    • Sentiment after translation: A case-study on Arabic social media posts
    • May-June
    • Mohammad Salameh, Saif Mohammad, and Svetlana Kiritchenko. 2015. Sentiment after translation: A case-study on arabic social media posts. In Proceedings of NAACL-HLT, pages 767-777, May-June.
    • (2015) Proceedings of NAACL-HLT , pp. 767-777
    • Salameh, M.1    Mohammad, S.2    Kiritchenko, S.3
  • 23
    • 84959882687 scopus 로고    scopus 로고
    • Building large-scale twitter-specific sentiment lexicon : A representation learning approach
    • August
    • Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting Liu. 2014a. Building large-scale twitter-specific sentiment lexicon : A representation learning approach. In Proceedings of COLING, pages 172-182, August.
    • (2014) Proceedings of COLING , pp. 172-182
    • Tang, D.1    Wei, F.2    Qin, B.3    Zhou, M.4    Liu, T.5
  • 24
    • 84906924350 scopus 로고    scopus 로고
    • Learning sentimentspecific word embedding for twitter sentiment classification
    • June
    • Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. 2014b. Learning sentimentspecific word embedding for twitter sentiment classification. In Proceedings of ACL, pages 1555- 1565, June.
    • (2014) Proceedings of ACL , pp. 1555-1565
    • Tang, D.1    Wei, F.2    Yang, N.3    Zhou, M.4    Liu, T.5    Qin, B.6
  • 25
    • 85136072040 scopus 로고    scopus 로고
    • Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews
    • Peter Turney. 2002. Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. In Proceedings of ACL.
    • (2002) Proceedings of ACL
    • Turney, P.1
  • 26
    • 84949748798 scopus 로고    scopus 로고
    • Target-dependent twitter sentiment classification with rich automatic features
    • July
    • Duy-Tin Vo and Yue Zhang. 2015. Target-dependent twitter sentiment classification with rich automatic features. In Proceedings of IJCAI, pages 1347- 1353, July.
    • (2015) Proceedings of IJCAI , pp. 1347-1353
    • Vo, D.-T.1    Zhang, Y.2
  • 27
    • 80053247760 scopus 로고    scopus 로고
    • Recognizing contextual polarity in phraselevel sentiment analysis
    • Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. 2005. Recognizing contextual polarity in phraselevel sentiment analysis. In Proceedings of HLTEMNLP.
    • (2005) Proceedings of HLTEMNLP
    • Wilson, T.1    Wiebe, J.2    Hoffmann, P.3
  • 29
    • 85122021495 scopus 로고    scopus 로고
    • Nrc-Canada-2014: Recent improvements in the sentiment analysis of tweets
    • Xiaodan Zhu, Svetlana Kiritchenko, and Saif Mohammad. 2014. Nrc-canada-2014: Recent improvements in the sentiment analysis of tweets. In Proceedings of SemEval-2014, pages 443-447.
    • (2014) Proceedings of SemEval-2014 , pp. 443-447
    • Zhu, X.1    Kiritchenko, S.2    Mohammad, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.