메뉴 건너뛰기




Volumn 43, Issue , 2016, Pages 473-476

A left ventricular segmentation method on 3D echocardiography using deep learning and snake

Author keywords

[No Author keywords available]

Indexed keywords

CARDIOLOGY; DIAGNOSIS; ECHOCARDIOGRAPHY; IMAGE SEGMENTATION; NEURAL NETWORKS;

EID: 85016110959     PISSN: 23258861     EISSN: 2325887X     Source Type: Conference Proceeding    
DOI: 10.22489/cinc.2016.136-409     Document Type: Conference Paper
Times cited : (36)

References (16)
  • 1
    • 77951633192 scopus 로고    scopus 로고
    • A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint
    • Jun
    • Y. Zhu, X. Papademetris, A. J. Sinusas, and J. S. Duncan, "A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint, " Med Image Anal, vol. 14, pp. 429-48, Jun 2010.
    • (2010) Med Image Anal , vol.14 , pp. 429-448
    • Zhu, Y.1    Papademetris, X.2    Sinusas, A.J.3    Duncan, J.S.4
  • 2
    • 0142210308 scopus 로고    scopus 로고
    • Combinative multiscale level set framework for echocardiographic image segmentation
    • Dec
    • N. Lin, W. Yu, and J. S. Duncan, "Combinative multiscale level set framework for echocardiographic image segmentation, " Med Image Anal, vol. 7, pp. 529-37, Dec 2003.
    • (2003) Med Image Anal , vol.7 , pp. 529-537
    • Lin, N.1    Duncan, J.S.2
  • 3
    • 84894315365 scopus 로고    scopus 로고
    • Whole myocardium tracking in 2D-echocardiography in multiple orientations using a motion constrained level-set
    • Apr
    • T. Dietenbeck, D. Barbosa, M. Alessandrini, R. Jasaityte, V. Robesyn, J. D'hooge, et al., "Whole myocardium tracking in 2D-echocardiography in multiple orientations using a motion constrained level-set, " Medical Image Analysis, vol. 18, pp. 500-514, Apr 2014.
    • (2014) Medical Image Analysis , vol.18 , pp. 500-514
    • Dietenbeck, T.1    Barbosa, D.2    Alessandrini, M.3    Jasaityte, R.4    Robesyn, V.5    D'Hooge, J.6
  • 5
    • 77955561925 scopus 로고    scopus 로고
    • Model driven quantification of left ventricular function from sparse single-beat 3D echocardiography
    • Aug
    • M. Ma, M. van Stralen, J. H. Reiber, J. G. Bosch, and B. P. Lelieveldt, "Model driven quantification of left ventricular function from sparse single-beat 3D echocardiography, " Med Image Anal, vol. 14, pp. 582-93, Aug 2010.
    • (2010) Med Image Anal , vol.14 , pp. 582-593
    • Van Stralen, M.1    Reiber, J.H.2    Bosch, J.G.3    Lelieveldt, B.P.4
  • 6
    • 34948818246 scopus 로고    scopus 로고
    • Constrained active appearance models for segmentation of triplane echocardiograms
    • Oct
    • J. Hansegard, S. Urheim, K. Lunde, and S. I. Rabben, "Constrained active appearance models for segmentation of triplane echocardiograms, " IEEE Trans Med Imaging, vol. 26, pp. 1391-400, Oct 2007.
    • (2007) IEEE Trans Med Imaging , vol.26 , pp. 1391-1400
    • Hansegard, J.1    Urheim, S.2    Lunde, K.3    Rabben, S.I.4
  • 7
    • 84884546164 scopus 로고    scopus 로고
    • Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data
    • Nov
    • G. Carneiro and J. C. Nascimento, "Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle Endocardium in Ultrasound Data, " Ieee Transactions on Pattern Analysis And Machine Intelligence, vol. 35, pp. 2592-2607, Nov 2013.
    • (2013) Ieee Transactions on Pattern Analysis and Machine Intelligence , vol.35 , pp. 2592-2607
    • Carneiro, G.1    Nascimento, J.C.2
  • 9
    • 77956009389 scopus 로고    scopus 로고
    • Multiple dynamic models for tracking the left ventricle of the heart from ultrasound data using particle filters and deep learning architectures
    • N. J. C. Carneiro G, "Multiple dynamic models for tracking the left ventricle of the heart from ultrasound data using particle filters and deep learning architectures, " presented at the Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on//., 2010.
    • (2010) The Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
    • Carneiro, N.J.C.G.1
  • 12
    • 85016133285 scopus 로고    scopus 로고
    • A novel left ventricular volumes prediction method based on deep learning network in cardiac MRI
    • GN Luo, GX Sun, KQ Wang, SY Dong, HG Zhang. A novel left ventricular volumes prediction method based on deep learning network in cardiac MRI. Computing in Cardiology 2016;43.
    • (2016) Computing in Cardiology , pp. 43
    • Luo, G.N.1    Sun, G.X.2    Wang, K.Q.3    Dong, S.Y.4    Zhang, H.G.5
  • 13
    • 85016124927 scopus 로고    scopus 로고
    • A combined multi-scale deep learning and random forests approach for direct left ventricular volumes estimation in 3D echocardiography
    • SY Dong, GN Luo, GX Sun, KQ Wang, HG Zhang. A combined multi-scale deep learning and random forests approach for direct left ventricular volumes estimation in 3D echocardiography. Computing in Cardiology 2016;43.
    • (2016) Computing in Cardiology , pp. 43
    • Dong, S.Y.1    Luo, G.N.2    Sun, G.X.3    Wang, K.Q.4    Zhang, H.G.5
  • 14
    • 84958955334 scopus 로고    scopus 로고
    • A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
    • May
    • M. R. Avendi, A. Kheradvar, and H. Jafarkhani, "A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI, " Med Image Anal, vol. 30, pp. 108-19, May 2016.
    • (2016) Med Image Anal , vol.30 , pp. 108-119
    • Avendi, M.R.1    Kheradvar, A.2    Jafarkhani, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.