-
1
-
-
84904512864
-
PSnakes: A new radial active contour model and its application in the segmentation of the left ventricle from echocardiographic images
-
De Alexandria AR, Cortez PC, Bessa JA, Felix JHD, de Abreu JS, de Albuquerque VHC. pSnakes: A new radial active contour model and its application in the segmentation of the left ventricle from echocardiographic images. Comput Meth Prog Bio. 2014; 116(3): 260-73.
-
(2014)
Comput Meth Prog Bio.
, vol.116
, Issue.3
, pp. 260-273
-
-
De Alexandria, A.R.1
Cortez, P.C.2
Bessa, J.A.3
Felix, J.H.D.4
De Abreu, J.S.5
De Albuquerque, V.H.C.6
-
2
-
-
84894315365
-
Whole myocardium tracking in 2D-echocardiography in multiple orientations using a motion constrained level-set
-
Dietenbeck T, Barbosa D, et al. Whole myocardium tracking in 2D-echocardiography in multiple orientations using a motion constrained level-set. Med Image Anal. 2014; 18(3): 500-14.
-
(2014)
Med Image Anal.
, vol.18
, Issue.3
, pp. 500-514
-
-
Dietenbeck, T.1
Barbosa, D.2
-
3
-
-
84861612012
-
A fast region-based active contour model for boundary detection of echocardiographic images
-
Saini K, Dewal ML, Rohit M. A Fast Region-Based Active Contour Model for Boundary Detection of Echocardiographic Images. J Digit Imaging. 2012; 25(2): 271-8.
-
(2012)
J Digit Imaging.
, vol.25
, Issue.2
, pp. 271-278
-
-
Saini, K.1
Dewal, M.L.2
Rohit, M.3
-
6
-
-
0035478854
-
Random forests
-
L B. Random forests. Machine learning. 2001; 45(1): 5-32.
-
(2001)
Machine Learning.
, vol.45
, Issue.1
, pp. 5-32
-
-
-
8
-
-
84870341707
-
Fast and fully automatic 3-d echocardiographic segmentation using B-spline explicit active surfaces: Feasibility study and validation in a clinical setting
-
Barbosa D, Dietenbeck T, et al. Fast and fully automatic 3-d echocardiographic segmentation using B-spline explicit active surfaces: feasibility study and validation in a clinical setting. Ultrasound Med Biol. 2013; 39(1): 89-101.
-
(2013)
Ultrasound Med Biol.
, vol.39
, Issue.1
, pp. 89-101
-
-
Barbosa, D.1
Dietenbeck, T.2
-
9
-
-
0142210308
-
Combinative multi-scale level set framework for echocardiographic image segmentation
-
Lin N, Yu W, Duncan JS. Combinative multi-scale level set framework for echocardiographic image segmentation. Med Image Anal. 2003; 7(4): 529-37.
-
(2003)
Med Image Anal.
, vol.7
, Issue.4
, pp. 529-537
-
-
Lin, N.1
Yu, W.2
Duncan, J.S.3
-
10
-
-
84856209086
-
Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set
-
Dietenbeck T, Alessandrini M, Barbosa D, D'hooge J, Friboulet D, Bernard O. Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set. Med Image Anal. 2012; 16(2): 386-401.
-
(2012)
Med Image Anal.
, vol.16
, Issue.2
, pp. 386-401
-
-
Dietenbeck, T.1
Alessandrini, M.2
Barbosa, D.3
D'Hooge, J.4
Friboulet, D.5
Bernard, O.6
-
12
-
-
0035324512
-
Multistage hybrid active appearance model matching: Segmentation of left and right ventricles in cardiac MR images
-
Mitchell SC, Lelieveldt BP, et al. Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging. 2001; 20(5): 415-23.
-
(2001)
IEEE Trans Med Imaging.
, vol.20
, Issue.5
, pp. 415-423
-
-
Mitchell, S.C.1
Lelieveldt, B.P.2
-
13
-
-
84255188348
-
B-spline explicit active surfaces: An efficient framework for real-time 3-D region-based segmentation
-
Barbosa D, Dietenbeck T, Schaerer J, D'Hooge J, Friboulet D, Bernard O. B-spline explicit active surfaces: An efficient framework for real-time 3-D region-based segmentation. IEEE transactions on image processing 2012; 21(1): 241-51.
-
(2012)
IEEE Transactions on Image Processing
, vol.21
, Issue.1
, pp. 241-251
-
-
Barbosa, D.1
Dietenbeck, T.2
Schaerer, J.3
D'Hooge, J.4
Friboulet, D.5
Bernard, O.6
-
14
-
-
84857295176
-
The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
-
Carneiro G, Nascimento JC, Freitas A. The Segmentation of the Left Ventricle of the Heart From Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods. Ieee T Image Process. 2012; 21(3): 968-82.
-
(2012)
Ieee T Image Process.
, vol.21
, Issue.3
, pp. 968-982
-
-
Carneiro, G.1
Nascimento, J.C.2
Freitas, A.3
-
16
-
-
85016133285
-
A novel left ventricular volumes prediction method based on deep learning network in cardiac MRI
-
Luo GN, Sun GX, et al. A novel left ventricular volumes prediction method based on deep learning network in cardiac MRI. Computing in Cardiology: IEEE; 2016.
-
(2016)
Computing in Cardiology: IEEE
-
-
Luo, G.N.1
Sun, G.X.2
|