메뉴 건너뛰기




Volumn 43, Issue , 2016, Pages 889-892

A combined multi-scale deep learning and random forests approach for direct left ventricular volumes estimation in 3D echocardiography

Author keywords

[No Author keywords available]

Indexed keywords

CARDIOLOGY; CONVOLUTION; DECISION TREES; DIAGNOSIS; ECHOCARDIOGRAPHY;

EID: 85016124927     PISSN: 23258861     EISSN: 2325887X     Source Type: Conference Proceeding    
DOI: 10.22489/cinc.2016.258-250     Document Type: Conference Paper
Times cited : (15)

References (17)
  • 1
    • 84904512864 scopus 로고    scopus 로고
    • PSnakes: A new radial active contour model and its application in the segmentation of the left ventricle from echocardiographic images
    • De Alexandria AR, Cortez PC, Bessa JA, Felix JHD, de Abreu JS, de Albuquerque VHC. pSnakes: A new radial active contour model and its application in the segmentation of the left ventricle from echocardiographic images. Comput Meth Prog Bio. 2014; 116(3): 260-73.
    • (2014) Comput Meth Prog Bio. , vol.116 , Issue.3 , pp. 260-273
    • De Alexandria, A.R.1    Cortez, P.C.2    Bessa, J.A.3    Felix, J.H.D.4    De Abreu, J.S.5    De Albuquerque, V.H.C.6
  • 2
    • 84894315365 scopus 로고    scopus 로고
    • Whole myocardium tracking in 2D-echocardiography in multiple orientations using a motion constrained level-set
    • Dietenbeck T, Barbosa D, et al. Whole myocardium tracking in 2D-echocardiography in multiple orientations using a motion constrained level-set. Med Image Anal. 2014; 18(3): 500-14.
    • (2014) Med Image Anal. , vol.18 , Issue.3 , pp. 500-514
    • Dietenbeck, T.1    Barbosa, D.2
  • 3
    • 84861612012 scopus 로고    scopus 로고
    • A fast region-based active contour model for boundary detection of echocardiographic images
    • Saini K, Dewal ML, Rohit M. A Fast Region-Based Active Contour Model for Boundary Detection of Echocardiographic Images. J Digit Imaging. 2012; 25(2): 271-8.
    • (2012) J Digit Imaging. , vol.25 , Issue.2 , pp. 271-278
    • Saini, K.1    Dewal, M.L.2    Rohit, M.3
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L B. Random forests. Machine learning. 2001; 45(1): 5-32.
    • (2001) Machine Learning. , vol.45 , Issue.1 , pp. 5-32
  • 8
    • 84870341707 scopus 로고    scopus 로고
    • Fast and fully automatic 3-d echocardiographic segmentation using B-spline explicit active surfaces: Feasibility study and validation in a clinical setting
    • Barbosa D, Dietenbeck T, et al. Fast and fully automatic 3-d echocardiographic segmentation using B-spline explicit active surfaces: feasibility study and validation in a clinical setting. Ultrasound Med Biol. 2013; 39(1): 89-101.
    • (2013) Ultrasound Med Biol. , vol.39 , Issue.1 , pp. 89-101
    • Barbosa, D.1    Dietenbeck, T.2
  • 9
    • 0142210308 scopus 로고    scopus 로고
    • Combinative multi-scale level set framework for echocardiographic image segmentation
    • Lin N, Yu W, Duncan JS. Combinative multi-scale level set framework for echocardiographic image segmentation. Med Image Anal. 2003; 7(4): 529-37.
    • (2003) Med Image Anal. , vol.7 , Issue.4 , pp. 529-537
    • Lin, N.1    Yu, W.2    Duncan, J.S.3
  • 10
    • 84856209086 scopus 로고    scopus 로고
    • Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set
    • Dietenbeck T, Alessandrini M, Barbosa D, D'hooge J, Friboulet D, Bernard O. Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set. Med Image Anal. 2012; 16(2): 386-401.
    • (2012) Med Image Anal. , vol.16 , Issue.2 , pp. 386-401
    • Dietenbeck, T.1    Alessandrini, M.2    Barbosa, D.3    D'Hooge, J.4    Friboulet, D.5    Bernard, O.6
  • 12
    • 0035324512 scopus 로고    scopus 로고
    • Multistage hybrid active appearance model matching: Segmentation of left and right ventricles in cardiac MR images
    • Mitchell SC, Lelieveldt BP, et al. Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging. 2001; 20(5): 415-23.
    • (2001) IEEE Trans Med Imaging. , vol.20 , Issue.5 , pp. 415-423
    • Mitchell, S.C.1    Lelieveldt, B.P.2
  • 14
    • 84857295176 scopus 로고    scopus 로고
    • The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
    • Carneiro G, Nascimento JC, Freitas A. The Segmentation of the Left Ventricle of the Heart From Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods. Ieee T Image Process. 2012; 21(3): 968-82.
    • (2012) Ieee T Image Process. , vol.21 , Issue.3 , pp. 968-982
    • Carneiro, G.1    Nascimento, J.C.2    Freitas, A.3
  • 16
    • 85016133285 scopus 로고    scopus 로고
    • A novel left ventricular volumes prediction method based on deep learning network in cardiac MRI
    • Luo GN, Sun GX, et al. A novel left ventricular volumes prediction method based on deep learning network in cardiac MRI. Computing in Cardiology: IEEE; 2016.
    • (2016) Computing in Cardiology: IEEE
    • Luo, G.N.1    Sun, G.X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.