메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages

The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds

Author keywords

Electrospinning; maturogen; pre stretched scaffold; tissue fusion; tissue spheroid; vascular tissue engineering

Indexed keywords

BIOMIMETICS; CELL CULTURE; CELLS; SCAFFOLDS (BIOLOGY); SELF ASSEMBLY; TISSUE;

EID: 85015992268     PISSN: None     EISSN: 20417314     Source Type: Journal    
DOI: 10.1177/2041731414556561     Document Type: Article
Times cited : (31)

References (45)
  • 1
    • 33749574116 scopus 로고    scopus 로고
    • Biomimetic electrospun nanofibers for tissue regeneration
    • S.LiaoB.LiZ.Ma. Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater2006; 1: R45–R53.
    • (2006) Biomed Mater , vol.1 , pp. R45-R53
    • Liao, S.1    Li, B.2    Ma, Z.3
  • 2
    • 33745799503 scopus 로고    scopus 로고
    • Electrospinning of polymeric nanofibers for tissue engineering applications: a review
    • Q.P.PhamU.SharmaA.G.Mikos. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng2006; 12: 1197–1211.
    • (2006) Tissue Eng , vol.12 , pp. 1197-1211
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 3
    • 40049090999 scopus 로고    scopus 로고
    • Electrospinning: applications in drug delivery and tissue engineering
    • T.J.SillH.A.von Recum. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials2008; 29: 1989–2006.
    • (2008) Biomaterials , vol.29 , pp. 1989-2006
    • Sill, T.J.1    von Recum, H.A.2
  • 4
    • 2442658190 scopus 로고    scopus 로고
    • Electrospinning collagen and elastin: preliminary vascular tissue engineering
    • E.D.BolandJ.A.MatthewsK.J.Pawlowski. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci2004; 9: 1422–1432.
    • (2004) Front Biosci , vol.9 , pp. 1422-1432
    • Boland, E.D.1    Matthews, J.A.2    Pawlowski, K.J.3
  • 5
    • 34547533472 scopus 로고    scopus 로고
    • Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts
    • C.K.HashiY.ZhuG.Y.Yang. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A2007; 104: 11915–11920.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 11915-11920
    • Hashi, C.K.1    Zhu, Y.2    Yang, G.Y.3
  • 6
    • 43649085052 scopus 로고    scopus 로고
    • Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication
    • V.MironovV.KasyanovR.R.Markwald. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol2008; 26: 338–344.
    • (2008) Trends Biotechnol , vol.26 , pp. 338-344
    • Mironov, V.1    Kasyanov, V.2    Markwald, R.R.3
  • 7
    • 78651333998 scopus 로고    scopus 로고
    • Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts
    • H.WuJ.FanC.C.Chu. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci Mater Med2010; 21: 3207–3215.
    • (2010) J Mater Sci Mater Med , vol.21 , pp. 3207-3215
    • Wu, H.1    Fan, J.2    Chu, C.C.3
  • 8
    • 4544386133 scopus 로고    scopus 로고
    • Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering
    • C.XuR.InaiM.Kotaki. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng2004; 10: 1160–1168.
    • (2004) Tissue Eng , vol.10 , pp. 1160-1168
    • Xu, C.1    Inai, R.2    Kotaki, M.3
  • 9
    • 77956901732 scopus 로고    scopus 로고
    • Micropatterning of three-dimensional electrospun polyurethane vascular grafts
    • P.UttayaratA.PeretsM.Li. Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater2010; 6: 4229–4237.
    • (2010) Acta Biomater , vol.6 , pp. 4229-4237
    • Uttayarat, P.1    Perets, A.2    Li, M.3
  • 10
    • 27644501985 scopus 로고    scopus 로고
    • Controlled fabrication of a biological vascular substitute
    • J.StitzelJ.LiuS.J.Lee. Controlled fabrication of a biological vascular substitute. Biomaterials2006; 27: 1088–1094.
    • (2006) Biomaterials , vol.27 , pp. 1088-1094
    • Stitzel, J.1    Liu, J.2    Lee, S.J.3
  • 11
    • 26944451302 scopus 로고    scopus 로고
    • Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix
    • J.J.StankusJ.GuanK.Fujimoto. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials2006; 27: 735–744.
    • (2006) Biomaterials , vol.27 , pp. 735-744
    • Stankus, J.J.1    Guan, J.2    Fujimoto, K.3
  • 12
    • 33947164658 scopus 로고    scopus 로고
    • Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization
    • J.J.StankusL.SolettiK.Fujimoto. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials2007; 28: 2738–2746.
    • (2007) Biomaterials , vol.28 , pp. 2738-2746
    • Stankus, J.J.1    Soletti, L.2    Fujimoto, K.3
  • 13
    • 76949084388 scopus 로고    scopus 로고
    • Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library
    • R.B.MetterJ.L.IfkovitsK.Hou. Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library. Acta Biomater2010; 6: 1219–1226.
    • (2010) Acta Biomater , vol.6 , pp. 1219-1226
    • Metter, R.B.1    Ifkovits, J.L.2    Hou, K.3
  • 14
    • 70449720966 scopus 로고    scopus 로고
    • A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts
    • L.SolettiY.HongJ.Guan. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater2010; 6: 110–122.
    • (2010) Acta Biomater , vol.6 , pp. 110-122
    • Soletti, L.1    Hong, Y.2    Guan, J.3
  • 15
    • 84861591090 scopus 로고    scopus 로고
    • Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds
    • B.L.LeeH.JeonA.Wang. Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomater2012; 8: 2648–2658.
    • (2012) Acta Biomater , vol.8 , pp. 2648-2658
    • Lee, B.L.1    Jeon, H.2    Wang, A.3
  • 16
    • 84863072204 scopus 로고    scopus 로고
    • A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues
    • B.YuanY.JinY.Sun. A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues. Adv Mater2012; 24: 890–896.
    • (2012) Adv Mater , vol.24 , pp. 890-896
    • Yuan, B.1    Jin, Y.2    Sun, Y.3
  • 17
    • 77953688143 scopus 로고    scopus 로고
    • A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks
    • J.M.KelmV.LorberJ.G.Snedeker. A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J Biotechnol2010; 148: 46–55.
    • (2010) J Biotechnol , vol.148 , pp. 46-55
    • Kelm, J.M.1    Lorber, V.2    Snedeker, J.G.3
  • 18
    • 60549108145 scopus 로고    scopus 로고
    • Organ printing: tissue spheroids as building blocks
    • V.MironovR.P.ViscontiV.Kasyanov. Organ printing: tissue spheroids as building blocks. Biomaterials2009; 30: 2164–2174.
    • (2009) Biomaterials , vol.30 , pp. 2164-2174
    • Mironov, V.1    Visconti, R.P.2    Kasyanov, V.3
  • 19
    • 79952011307 scopus 로고    scopus 로고
    • Tissue engineering by self-assembly and bio-printing of living cells
    • K.JakabC.NorotteF.Marga. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication2010; 2: 022001.
    • (2010) Biofabrication , vol.2 , pp. 022001
    • Jakab, K.1    Norotte, C.2    Marga, F.3
  • 20
    • 36849044035 scopus 로고    scopus 로고
    • Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries
    • D.M.DeanA.P.NapolitanoJ.Youssef. Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J2007; 21: 4005–4012.
    • (2007) FASEB J , vol.21 , pp. 4005-4012
    • Dean, D.M.1    Napolitano, A.P.2    Youssef, J.3
  • 21
    • 0242668870 scopus 로고    scopus 로고
    • Organ printing: computer-aided jet-based 3D tissue engineering
    • V.MironovT.BolandT.Trusk. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol2003; 21: 157–161.
    • (2003) Trends Biotechnol , vol.21 , pp. 157-161
    • Mironov, V.1    Boland, T.2    Trusk, T.3
  • 22
    • 33748929729 scopus 로고    scopus 로고
    • Tissue fusion and cell sorting in embryonic development and disease: biomedical implications
    • J.M.Perez-PomaresR.A.Foty. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays2006; 28: 809–821.
    • (2006) Bioessays , vol.28 , pp. 809-821
    • Perez-Pomares, J.M.1    Foty, R.A.2
  • 24
    • 38449109938 scopus 로고    scopus 로고
    • Organ printing: promises and challenges
    • V.MironovV.KasyanovC.Drake. Organ printing: promises and challenges. Regen Med2008; 3: 93–103.
    • (2008) Regen Med , vol.3 , pp. 93-103
    • Mironov, V.1    Kasyanov, V.2    Drake, C.3
  • 25
    • 33750615283 scopus 로고    scopus 로고
    • Tissue-transplant fusion and vascularization of myocardial microtissues and macrotissues implanted into chicken embryos and rats
    • J.M.KelmV.DjonovS.P.Hoerstrup. Tissue-transplant fusion and vascularization of myocardial microtissues and macrotissues implanted into chicken embryos and rats. Tissue Eng2006; 12: 2541–2553.
    • (2006) Tissue Eng , vol.12 , pp. 2541-2553
    • Kelm, J.M.1    Djonov, V.2    Hoerstrup, S.P.3
  • 26
    • 33750953664 scopus 로고    scopus 로고
    • Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units
    • J.M.KelmV.DjonovL.M.Ittner. Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Eng2006; 12: 2151–2160.
    • (2006) Tissue Eng , vol.12 , pp. 2151-2160
    • Kelm, J.M.1    Djonov, V.2    Ittner, L.M.3
  • 27
    • 70349742562 scopus 로고    scopus 로고
    • Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue
    • K.R.StevensK.L.KreutzigerS.K.Dupras. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci U S A2009; 106: 16568–16573.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 16568-16573
    • Stevens, K.R.1    Kreutziger, K.L.2    Dupras, S.K.3
  • 28
    • 66249089481 scopus 로고    scopus 로고
    • Scaffold-free human cardiac tissue patch created from embryonic stem cells
    • K.R.StevensL.PabonV.Muskheli. Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A2009; 15: 1211–1222.
    • (2009) Tissue Eng Part A , vol.15 , pp. 1211-1222
    • Stevens, K.R.1    Pabon, L.2    Muskheli, V.3
  • 29
    • 0036498496 scopus 로고    scopus 로고
    • Of layers and spheres: the reaggregate approach in tissue engineering
    • P.G.LayerA.RobitzkiA.Rothermel. Of layers and spheres: the reaggregate approach in tissue engineering. Trends Neurosci2002; 25: 131–134.
    • (2002) Trends Neurosci , vol.25 , pp. 131-134
    • Layer, P.G.1    Robitzki, A.2    Rothermel, A.3
  • 30
    • 31044451413 scopus 로고    scopus 로고
    • Artificial design of three-dimensional retina-like tissue from dissociated cells of the mammalian retina by rotation-mediated cell aggregation
    • A.RothermelT.BiedermannW.Weigel. Artificial design of three-dimensional retina-like tissue from dissociated cells of the mammalian retina by rotation-mediated cell aggregation. Tissue Eng2005; 11: 1749–1756.
    • (2005) Tissue Eng , vol.11 , pp. 1749-1756
    • Rothermel, A.1    Biedermann, T.2    Weigel, W.3
  • 31
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • C.NorotteF.S.MargaL.E.Niklason. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials2009; 30: 5910–5917.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3
  • 32
    • 76949095529 scopus 로고    scopus 로고
    • Towards organ printing: engineering an intra-organ branched vascular tree
    • R.P.ViscontiV.KasyanovC.Gentile. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther2010; 10: 409–420.
    • (2010) Expert Opin Biol Ther , vol.10 , pp. 409-420
    • Visconti, R.P.1    Kasyanov, V.2    Gentile, C.3
  • 33
    • 10044274322 scopus 로고    scopus 로고
    • Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold
    • K.N.ChuaW.S.LimP.Zhang. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials2005; 26: 2537–2547.
    • (2005) Biomaterials , vol.26 , pp. 2537-2547
    • Chua, K.N.1    Lim, W.S.2    Zhang, P.3
  • 34
    • 1542267824 scopus 로고    scopus 로고
    • Engineering biological structures of prescribed shape using self-assembling multicellular systems
    • K.JakabA.NeaguV.Mironov. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci U S A2004; 101: 2864–2869.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 2864-2869
    • Jakab, K.1    Neagu, A.2    Mironov, V.3
  • 35
    • 0037701271 scopus 로고    scopus 로고
    • Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types
    • J.M.KelmN.E.TimminsC.J.Brown. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng2003; 83: 173–180.
    • (2003) Biotechnol Bioeng , vol.83 , pp. 173-180
    • Kelm, J.M.1    Timmins, N.E.2    Brown, C.J.3
  • 36
    • 84879608434 scopus 로고    scopus 로고
    • A novel method to precisely assemble loose nanofiber structures for regenerative medicine applications
    • V.BeachleyE.KatsanevakisN.Zhang. A novel method to precisely assemble loose nanofiber structures for regenerative medicine applications. Adv Healthc Mater2013; 2: 343–351.
    • (2013) Adv Healthc Mater , vol.2 , pp. 343-351
    • Beachley, V.1    Katsanevakis, E.2    Zhang, N.3
  • 37
    • 40749083225 scopus 로고    scopus 로고
    • Tissue engineering by self-assembly of cells printed into topologically defined structures
    • K.JakabC.NorotteB.Damon. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A2008; 14: 413–421.
    • (2008) Tissue Eng Part A , vol.14 , pp. 413-421
    • Jakab, K.1    Norotte, C.2    Damon, B.3
  • 38
    • 34247882685 scopus 로고    scopus 로고
    • Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues
    • R.A.NorrisB.DamonV.Mironov. Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem2007; 101: 695–711.
    • (2007) J Cell Biochem , vol.101 , pp. 695-711
    • Norris, R.A.1    Damon, B.2    Mironov, V.3
  • 39
    • 78649678140 scopus 로고    scopus 로고
    • Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation
    • Z.HajduV.MironovA.N.Mehesz. Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation. J Tissue Eng Regen Med2010; 4: 659–664.
    • (2010) J Tissue Eng Regen Med , vol.4 , pp. 659-664
    • Hajdu, Z.1    Mironov, V.2    Mehesz, A.N.3
  • 40
    • 77956289251 scopus 로고    scopus 로고
    • Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma
    • S.S.SidhuS.YuanA.L.Innes. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci U S A2010; 107: 14170–14175.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 14170-14175
    • Sidhu, S.S.1    Yuan, S.2    Innes, A.L.3
  • 41
    • 1542373992 scopus 로고    scopus 로고
    • Fibronectin matrix assembly regulates alpha5beta1-mediated cell cohesion
    • E.E.RobinsonR.A.FotyS.A.Corbett. Fibronectin matrix assembly regulates alpha5beta1-mediated cell cohesion. Mol Biol Cell2004; 15: 973–981.
    • (2004) Mol Biol Cell , vol.15 , pp. 973-981
    • Robinson, E.E.1    Foty, R.A.2    Corbett, S.A.3
  • 42
    • 0037439766 scopus 로고    scopus 로고
    • Alpha5beta1 integrin mediates strong tissue cohesion
    • E.E.RobinsonK.M.ZazzaliS.A.Corbett. Alpha5beta1 integrin mediates strong tissue cohesion. J Cell Sci2003; 116: 377–386.
    • (2003) J Cell Sci , vol.116 , pp. 377-386
    • Robinson, E.E.1    Zazzali, K.M.2    Corbett, S.A.3
  • 43
    • 0024043131 scopus 로고
    • Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing
    • R.MontesanoL.Orci. Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc Natl Acad Sci U S A1988; 85: 4894–4897.
    • (1988) Proc Natl Acad Sci U S A , vol.85 , pp. 4894-4897
    • Montesano, R.1    Orci, L.2
  • 44
    • 0036277026 scopus 로고    scopus 로고
    • Myofibroblasts and mechano-regulation of connective tissue remodelling
    • J.J.TomasekG.GabbianiB.Hinz. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol2002; 3: 349–363.
    • (2002) Nat Rev Mol Cell Biol , vol.3 , pp. 349-363
    • Tomasek, J.J.1    Gabbiani, G.2    Hinz, B.3
  • 45
    • 84892697223 scopus 로고    scopus 로고
    • 4D printing: multi-material change
    • S.Tibbits. 4D printing: multi-material change. Architect Des2014; 84: 161–121.
    • (2014) Architect Des , vol.84 , pp. 121-161
    • Tibbits, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.