메뉴 건너뛰기




Volumn 7, Issue 3, 2017, Pages

Predicting AKI in emergency admissions: An external validation study of the acute kidney injury prediction score (APS)

Author keywords

[No Author keywords available]

Indexed keywords

CREATININE;

EID: 85015230151     PISSN: None     EISSN: 20446055     Source Type: Journal    
DOI: 10.1136/bmjopen-2016-013511     Document Type: Article
Times cited : (28)

References (65)
  • 1
    • 84936934461 scopus 로고    scopus 로고
    • KDIGO Clinical Practice Guideline for Acute Kidney Injury
    • KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int 2012;(Suppl 2):1-136.
    • (2012) Kidney Int , pp. 1-136
  • 2
    • 0343893748 scopus 로고    scopus 로고
    • Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network
    • Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 2000;342:1301-8.
    • (2000) N Engl J Med , vol.342 , pp. 1301-1308
  • 3
    • 84940448659 scopus 로고    scopus 로고
    • A systematic review and meta-analysis of early goal-directed therapy for septic shock: The ARISE, ProCESS and ProMISe Investigators
    • Angus DC, Barnato AE, Bell D, et al. A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators. Intensive Care Med 2015;41:1549-60.
    • (2015) Intensive Care Med , vol.41 , pp. 1549-1560
    • Angus, D.C.1    Barnato, A.E.2    Bell, D.3
  • 4
    • 77952997491 scopus 로고    scopus 로고
    • Transient azotaemia is associated with a high risk of death in hospitalized patients
    • Uchino S, Bellomo R, Bagshaw SM, et al. Transient azotaemia is associated with a high risk of death in hospitalized patients. Nephrol Dial Transplant 2010;25:1833-9.
    • (2010) Nephrol Dial Transplant , vol.25 , pp. 1833-1839
    • Uchino, S.1    Bellomo, R.2    Bagshaw, S.M.3
  • 5
    • 35348884792 scopus 로고    scopus 로고
    • The prognostic importance of a small acute decrement in kidney function in hospitalized patients: A systematic review and meta-analysis
    • Coca SG, Peixoto AJ, Garg AX, et al. The prognostic importance of a small acute decrement in kidney function in hospitalized patients: a systematic review and meta-analysis. Am J Kidney Dis 2007;50:712-20.
    • (2007) Am J Kidney Dis , vol.50 , pp. 712-720
    • Coca, S.G.1    Peixoto, A.J.2    Garg, A.X.3
  • 6
    • 33644874086 scopus 로고    scopus 로고
    • Acute kidney injury, mortality, length of stay, and costs in hospitalized patients
    • Chertow GM, Burdick E, Honour M, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 2005;16:3365-70.
    • (2005) J Am Soc Nephrol , vol.16 , pp. 3365-3370
    • Chertow, G.M.1    Burdick, E.2    Honour, M.3
  • 7
    • 84859128929 scopus 로고    scopus 로고
    • Acute kidney injury and mortality in hospitalized patients
    • Wang HE, Muntner P, Chertow GM, et al. Acute kidney injury and mortality in hospitalized patients. Am J Nephrol 2012;35:349-55.
    • (2012) Am J Nephrol , vol.35 , pp. 349-355
    • Wang, H.E.1    Muntner, P.2    Chertow, G.M.3
  • 8
    • 85015179992 scopus 로고    scopus 로고
    • National confidential enquiry into patient outcome and death
    • National confidential enquiry into patient outcome and death. Adding insult to injury: a review of the care of patients who died in hospital with a primary diagnosis of acute kidney injury (acute renal failure). 2009. http://www.ncepod.org.uk/2009report1/Downloads/AKI-report. pdf. http://www.ncepod.org.uk/2009report1/Downloads/AKI-report. pdf: NCEPOD.
    • (2009)
  • 9
    • 84875607952 scopus 로고    scopus 로고
    • Acute kidney injury: Outcomes and quality of care
    • Aitken E, Carruthers C, Gall L, et al. Acute kidney injury: outcomes and quality of care. QJM 2013;106:323-32.
    • (2013) QJM , vol.106 , pp. 323-332
    • Aitken, E.1    Carruthers, C.2    Gall, L.3
  • 10
    • 84920940414 scopus 로고    scopus 로고
    • Epidemiology and outcomes in community-acquired versus hospital-acquired AKI
    • Wonnacott A, Meran S, Amphlett B, et al. Epidemiology and outcomes in community-acquired versus hospital-acquired AKI. Clin J Am Soc Nephrol 2014;9:1007-14.
    • (2014) Clin J Am Soc Nephrol , vol.9 , pp. 1007-1014
    • Wonnacott, A.1    Meran, S.2    Amphlett, B.3
  • 11
    • 84874452300 scopus 로고    scopus 로고
    • Characteristics and outcomes in community-acquired versus hospital-acquired acute kidney injury
    • Schissler MM, Zaidi S, Kumar H, et al. Characteristics and outcomes in community-acquired versus hospital-acquired acute kidney injury. Nephrology (Carlton) 2013;18:183-7.
    • (2013) Nephrology (Carlton) , vol.18 , pp. 183-187
    • Schissler, M.M.1    Zaidi, S.2    Kumar, H.3
  • 12
    • 33847224817 scopus 로고    scopus 로고
    • Hospital-acquired and community-acquired acute renal failure in hospitalized Chinese: A ten-year review
    • Wang Y, Cui Z, Fan M. Hospital-acquired and community-acquired acute renal failure in hospitalized Chinese: a ten-year review. Ren Fail 2007;29:163-8.
    • (2007) Ren Fail , vol.29 , pp. 163-168
    • Wang, Y.1    Cui, Z.2    Fan, M.3
  • 13
    • 0034621496 scopus 로고    scopus 로고
    • Epidemiology of de novo acute renal failure in hospitalized African Americans: Comparing community-acquired vs hospital-acquired disease
    • Obialo CI, Okonofua EC, Tayade AS, et al. Epidemiology of de novo acute renal failure in hospitalized African Americans: comparing community-acquired vs hospital-acquired disease. Arch Intern Med 2000;160:1309-13.
    • (2000) Arch Intern Med , vol.160 , pp. 1309-1313
    • Obialo, C.I.1    Okonofua, E.C.2    Tayade, A.S.3
  • 14
    • 84941209952 scopus 로고    scopus 로고
    • Epidemiology and clinical correlates of AKI in Chinese hospitalized adults
    • Xu X, Nie S, Liu Z, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults. Clin J Am Soc Nephrol 2015;10:1510-18.
    • (2015) Clin J Am Soc Nephrol , vol.10 , pp. 1510-1518
    • Xu, X.1    Nie, S.2    Liu, Z.3
  • 15
    • 84880412794 scopus 로고    scopus 로고
    • Identifying the patient at risk of acute kidney injury: A predictive scoring system for the development of acute kidney injury in acute medical patients
    • Forni LG, Dawes T, Sinclair H, et al. Identifying the patient at risk of acute kidney injury: a predictive scoring system for the development of acute kidney injury in acute medical patients. Nephron Clin Pract 2013;123:143-50.
    • (2013) Nephron Clin Pract , vol.123 , pp. 143-150
    • Forni, L.G.1    Dawes, T.2    Sinclair, H.3
  • 16
    • 85015175300 scopus 로고    scopus 로고
    • National Institute for Health and Care Excellence (2013a) NICE Clinical Guideline 169: Acute kidney injury: Prevention, detection and management of acute kidney injury up to the point of renal replacement therapy
    • National Institute for Health and Care Excellence (2013a) NICE Clinical Guideline 169: Acute kidney injury: Prevention, detection and management of acute kidney injury up to the point of renal replacement therapy. http://tinyurl.com/najylbl.
  • 17
    • 84937201762 scopus 로고    scopus 로고
    • International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): A human rights case for nephrology
    • Mehta RL, Cerdá J, Burdmann EA, et al. International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 2015;385:2616-43.
    • (2015) Lancet , vol.385 , pp. 2616-2643
    • Mehta, R.L.1    Cerdá, J.2    Burdmann, E.A.3
  • 18
    • 0030239603 scopus 로고    scopus 로고
    • Predicting clinical states in individual patients
    • Braitman LE, Davidoff F. Predicting clinical states in individual patients. Ann Intern Med 1996;125:406-12.
    • (1996) Ann Intern Med , vol.125 , pp. 406-412
    • Braitman, L.E.1    Davidoff, F.2
  • 19
    • 0028209404 scopus 로고
    • Clinical judgment revisited: The distraction of quantitative models
    • Feinstein AR. Clinical Judgment revisited: the distraction of quantitative models. Ann Intern Med 1994;120:799-805.
    • (1994) Ann Intern Med , vol.120 , pp. 799-805
    • Feinstein, A.R.1
  • 20
    • 0027534004 scopus 로고
    • The risk of determining risk with multivariable models
    • Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. Ann Intern Med 1993;118:201-10.
    • (1993) Ann Intern Med , vol.118 , pp. 201-210
    • Concato, J.1    Feinstein, A.R.2    Holford, T.R.3
  • 21
    • 4444282343 scopus 로고    scopus 로고
    • Prognostic models including the Child-Pugh, MELD and Mayo risk scores-where are we and where should we go?
    • Christensen E. Prognostic models including the Child-Pugh, MELD and Mayo risk scores-where are we and where should we go? J Hepatol 2004;41:344-50.
    • (2004) J Hepatol , vol.41 , pp. 344-350
    • Christensen, E.1
  • 22
    • 84937548548 scopus 로고    scopus 로고
    • Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration
    • Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1-73.
    • (2015) Ann Intern Med , vol.162 , pp. W1-73
    • Moons, K.G.1    Altman, D.G.2    Reitsma, J.B.3
  • 23
    • 67650082402 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Validating a prognostic model
    • Altman DG, Vergouwe Y, Royston P, et al. Prognosis and prognostic research: validating a prognostic model. BMJ 2009;338: b605.
    • (2009) BMJ , vol.338 , pp. b605
    • Altman, D.G.1    Vergouwe, Y.2    Royston, P.3
  • 24
    • 84860159431 scopus 로고    scopus 로고
    • Risk prediction models: II. External validation, model updating, and impact assessment
    • Moons KG, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012;98:691-8.
    • (2012) Heart , vol.98 , pp. 691-698
    • Moons, K.G.1    Kengne, A.P.2    Grobbee, D.E.3
  • 25
    • 52949100612 scopus 로고    scopus 로고
    • Validation, updating and impact of clinical prediction rules: A review
    • Toll DB, Janssen KJ, Vergouwe Y, et al. Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol 2008;61:1085-94.
    • (2008) J Clin Epidemiol , vol.61 , pp. 1085-1094
    • Toll, D.B.1    Janssen, K.J.2    Vergouwe, Y.3
  • 26
    • 33644855006 scopus 로고    scopus 로고
    • Translating clinical research into clinical practice: Impact of using prediction rules to make decisions
    • Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med 2006;144:201-9.
    • (2006) Ann Intern Med , vol.144 , pp. 201-209
    • Reilly, B.M.1    Evans, A.T.2
  • 27
    • 54249091997 scopus 로고    scopus 로고
    • Predicting hospital-acquired acute kidney injury-A case-controlled study
    • Drawz PE, Miller RT, Sehgal AR. Predicting hospital-acquired acute kidney injury-a case-controlled study. Ren Fail 2008;30: 848-55.
    • (2008) Ren Fail , vol.30 , pp. 848-855
    • Drawz, P.E.1    Miller, R.T.2    Sehgal, A.R.3
  • 28
    • 78650824776 scopus 로고    scopus 로고
    • Development of inpatient risk stratification models of acute kidney injury for use in electronic health records
    • Matheny ME, Miller RA, Ikizler TA, et al. Development of inpatient risk stratification models of acute kidney injury for use in electronic health records. Med Decis Making 2010;30:639-50.
    • (2010) Med Decis Making , vol.30 , pp. 639-650
    • Matheny, M.E.1    Miller, R.A.2    Ikizler, T.A.3
  • 30
    • 84948397601 scopus 로고    scopus 로고
    • Acute kidney injury-how does automated detection perform?
    • Sawhney S, Fluck N, Marks A, et al. Acute kidney injury-how does automated detection perform? Nephrol Dial Transplant 2015;30:1853-61.
    • (2015) Nephrol Dial Transplant , vol.30 , pp. 1853-1861
    • Sawhney, S.1    Fluck, N.2    Marks, A.3
  • 31
    • 34548258778 scopus 로고    scopus 로고
    • Assessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited
    • Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited. Crit Care Med 2007;35:2052-6.
    • (2007) Crit Care Med , vol.35 , pp. 2052-2056
    • Kramer, A.A.1    Zimmerman, J.E.2
  • 33
    • 0033574245 scopus 로고    scopus 로고
    • Assessing the generalizability of prognostic information
    • Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med 1999;130:515-24.
    • (1999) Ann Intern Med , vol.130 , pp. 515-524
    • Justice, A.C.1    Covinsky, K.E.2    Berlin, J.A.3
  • 34
    • 84899459258 scopus 로고    scopus 로고
    • External validation of multivariable prediction models: A systematic review of methodological conduct and reporting
    • Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol 2014;14:40.
    • (2014) BMC Med Res Methodol , vol.14 , pp. 40
    • Collins, G.S.1    De Groot, J.A.2    Dutton, S.3
  • 35
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med 2000;19:453-73.
    • (2000) Stat Med , vol.19 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 36
    • 17144362520 scopus 로고    scopus 로고
    • Time and chance: The stochastic nature of disease causation
    • Coggon DI, Martyn CN. Time and chance: the stochastic nature of disease causation. Lancet 2005;365:1434-7.
    • (2005) Lancet , vol.365 , pp. 1434-1437
    • Coggon, D.I.1    Martyn, C.N.2
  • 37
    • 38749137358 scopus 로고    scopus 로고
    • Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve
    • Cook NR. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem 2008;54:17-23.
    • (2008) Clin Chem , vol.54 , pp. 17-23
    • Cook, N.R.1
  • 38
    • 0033972117 scopus 로고    scopus 로고
    • Short-term and long-term outcome prediction with the Acute Physiology and Chronic Health Evaluation II system after orthotopic liver transplantation
    • Angus DC, Clermont G, Kramer DJ, et al. Short-term and long-term outcome prediction with the Acute Physiology and Chronic Health Evaluation II system after orthotopic liver transplantation. Crit Care Med 2000;28:150-6.
    • (2000) Crit Care Med , vol.28 , pp. 150-156
    • Angus, D.C.1    Clermont, G.2    Kramer, D.J.3
  • 39
    • 84925496226 scopus 로고    scopus 로고
    • Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach
    • Halligan S, Altman DG, Mallett S. Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: a discussion and proposal for an alternative approach. Eur Radiol 2015;25:932-9.
    • (2015) Eur Radiol , vol.25 , pp. 932-939
    • Halligan, S.1    Altman, D.G.2    Mallett, S.3
  • 40
    • 33847109797 scopus 로고    scopus 로고
    • Use and misuse of the receiver operating characteristic curve in risk prediction
    • Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 2007;115:928-35.
    • (2007) Circulation , vol.115 , pp. 928-935
    • Cook, N.R.1
  • 41
    • 33750905259 scopus 로고    scopus 로고
    • Decision curve analysis: A novel method for evaluating prediction models
    • Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 2006;26:565-74.
    • (2006) Med Decis Making , vol.26 , pp. 565-574
    • Vickers, A.J.1    Elkin, E.B.2
  • 42
    • 22144490275 scopus 로고    scopus 로고
    • On criteria for evaluating models of absolute risk
    • Gail MH, Pfeiffer RM. On criteria for evaluating models of absolute risk. Biostatistics 2005;6:227-39.
    • (2005) Biostatistics , vol.6 , pp. 227-239
    • Gail, M.H.1    Pfeiffer, R.M.2
  • 43
    • 63349099495 scopus 로고    scopus 로고
    • Prognostic models: A methodological framework and review of models for breast cancer
    • Altman DG. Prognostic models: a methodological framework and review of models for breast cancer. Cancer Invest 2009;27:235-43.
    • (2009) Cancer Invest , vol.27 , pp. 235-243
    • Altman, D.G.1
  • 44
    • 38849091997 scopus 로고    scopus 로고
    • Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
    • discussion 207-12
    • Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008;27:157-72; discussion 207-12.
    • (2008) Stat Med , vol.27 , pp. 157-172
    • Pencina, M.J.1    D'Agostino, R.B.2    D'Agostino, R.B.3
  • 45
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: A framework for traditional and novel measures
    • Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010;21:128-38.
    • (2010) Epidemiology , vol.21 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3
  • 46
    • 84943302679 scopus 로고    scopus 로고
    • Risk prediction models for contrast induced nephropathy: Systematic review
    • Silver SA, Shah PM, Chertow GM, et al. Risk prediction models for contrast induced nephropathy: systematic review. BMJ 2015;351:h4395.
    • (2015) BMJ , vol.351 , pp. h4395
    • Silver, S.A.1    Shah, P.M.2    Chertow, G.M.3
  • 47
    • 84927742026 scopus 로고    scopus 로고
    • Predictive models for kidney disease: Improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery
    • Birnie K, Verheyden V, Pagano D, et al. Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit Care 2014;18:606.
    • (2014) Crit Care , vol.18 , pp. 606
    • Birnie, K.1    Verheyden, V.2    Pagano, D.3
  • 48
    • 84999025275 scopus 로고    scopus 로고
    • Validating a scoring tool to predict acute kidney injury (AKI) following cardiac surgery
    • Wong B, St Onge J, Korkola S, et al. Validating a scoring tool to predict acute kidney injury (AKI) following cardiac surgery. Can J Kidney Health Dis 2015;2:3.
    • (2015) Can J Kidney Health Dis , vol.2 , pp. 3
    • Wong, B.1    St Onge, J.2    Korkola, S.3
  • 49
    • 16344389033 scopus 로고    scopus 로고
    • A clinical score to predict acute renal failure after cardiac surgery
    • Thakar CV, Arrigain S, Worley S, et al. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol 2005;16:162-8.
    • (2005) J Am Soc Nephrol , vol.16 , pp. 162-168
    • Thakar, C.V.1    Arrigain, S.2    Worley, S.3
  • 50
    • 33751219227 scopus 로고    scopus 로고
    • Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery
    • quiz 08
    • Mehta RH, Grab JD, O'Brien SM, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation 2006;114:2208-16; quiz 08.
    • (2006) Circulation , vol.114 , pp. 2208-2216
    • Mehta, R.H.1    Grab, J.D.2    O'Brien, S.M.3
  • 51
    • 84901204583 scopus 로고    scopus 로고
    • Prediction of acute kidney injury within 30 days of cardiac surgery
    • 83 e1
    • Ng SY, Sanagou M, Wolfe R, et al. Prediction of acute kidney injury within 30 days of cardiac surgery. J Thorac Cardiovasc Surg 2014;147:1875-83, 83 e1.
    • (2014) J Thorac Cardiovasc Surg , vol.147 , pp. 1875-1883
    • Ng, S.Y.1    Sanagou, M.2    Wolfe, R.3
  • 52
    • 79951580761 scopus 로고    scopus 로고
    • Effect and clinical prediction of worsening renal function in acute decompensated heart failure
    • Breidthardt T, Socrates T, Noveanu M, et al. Effect and clinical prediction of worsening renal function in acute decompensated heart failure. Am J Cardiol 2011;107:730-5.
    • (2011) Am J Cardiol , vol.107 , pp. 730-735
    • Breidthardt, T.1    Socrates, T.2    Noveanu, M.3
  • 53
    • 84879388771 scopus 로고    scopus 로고
    • Derivation and validation of a prediction score for acute kidney injury in patients hospitalized with acute heart failure in a Chinese cohort
    • Wang YN, Cheng H, Yue T, et al. Derivation and validation of a prediction score for acute kidney injury in patients hospitalized with acute heart failure in a Chinese cohort. Nephrology (Carlton) 2013;18:489-96.
    • (2013) Nephrology (Carlton) , vol.18 , pp. 489-496
    • Wang, Y.N.1    Cheng, H.2    Yue, T.3
  • 54
    • 84897799053 scopus 로고    scopus 로고
    • Two acute kidney injury risk scores for critically ill cancer patients undergoing non-cardiac surgery
    • Xing XZ, Wang HJ, Huang CL, et al. Two acute kidney injury risk scores for critically ill cancer patients undergoing non-cardiac surgery. World J Emerg Med 2012;3:278-81.
    • (2012) World J Emerg Med , vol.3 , pp. 278-281
    • Xing, X.Z.1    Wang, H.J.2    Huang, C.L.3
  • 55
    • 84951787075 scopus 로고    scopus 로고
    • Risk of postoperative acute kidney injury in patients undergoing orthopaedic surgerydevelopment and validation of a risk score and effect of acute kidney injury on survival: Observational cohort study
    • Bell S, Dekker FW, Vadiveloo T, et al. Risk of postoperative acute kidney injury in patients undergoing orthopaedic surgerydevelopment and validation of a risk score and effect of acute kidney injury on survival: observational cohort study. BMJ 2015;351: h5639.
    • (2015) BMJ , vol.351 , pp. h5639
    • Bell, S.1    Dekker, F.W.2    Vadiveloo, T.3
  • 56
    • 85015175589 scopus 로고    scopus 로고
    • Health and Social Care Information Centre. Hospital Episode Statistics
    • Health and Social Care Information Centre. Hospital Episode Statistics. http://www.hesonline.nhs.uk/Ease/servlet/ContentServer?siteID=1937
  • 57
    • 84912088233 scopus 로고    scopus 로고
    • A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital
    • Porter CJ, Juurlink I, Bisset LH, et al. A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital. Nephrol Dial Transplant 2014;29:1888-93.
    • (2014) Nephrol Dial Transplant , vol.29 , pp. 1888-1893
    • Porter, C.J.1    Juurlink, I.2    Bisset, L.H.3
  • 58
    • 84859521743 scopus 로고    scopus 로고
    • Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients
    • Selby NM, Crowley L, Fluck RJ, et al. Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients. Clin J Am Soc Nephrol 2012;7:533-40.
    • (2012) Clin J Am Soc Nephrol , vol.7 , pp. 533-540
    • Selby, N.M.1    Crowley, L.2    Fluck, R.J.3
  • 59
    • 61449207043 scopus 로고    scopus 로고
    • Medicaid patients at high risk for frequent hospital admission: Real-time identification and remediable risks
    • Raven MC, Billings JC, Goldfrank LR, et al. Medicaid patients at high risk for frequent hospital admission: real-time identification and remediable risks. J Urban Health 2009;86:230-41.
    • (2009) J Urban Health , vol.86 , pp. 230-241
    • Raven, M.C.1    Billings, J.C.2    Goldfrank, L.R.3
  • 60
    • 84942417773 scopus 로고    scopus 로고
    • Prevalence of and Predictors for Frequent Utilization of Emergency Department: A Population-Based Study
    • Ko M, Lee Y, Chen C, et al. Prevalence of and Predictors for Frequent Utilization of Emergency Department: A Population-Based Study. Medicine (Baltimore) 2015;94:e1205.
    • (2015) Medicine (Baltimore) , vol.94 , pp. e1205
    • Ko, M.1    Lee, Y.2    Chen, C.3
  • 61
    • 84867898749 scopus 로고    scopus 로고
    • Frequent hospital admission of older people with chronic disease: A cross-sectional survey with telephone follow-up and data linkage
    • Longman JM, I Rolfe M, Passey MD, et al. Frequent hospital admission of older people with chronic disease: a cross-sectional survey with telephone follow-up and data linkage. BMC Health Serv Res 2012;12:373.
    • (2012) BMC Health Serv Res , vol.12 , pp. 373
    • Longman, J.M.1    Rolfe M, I.2    Passey, M.D.3
  • 62
    • 77954666033 scopus 로고    scopus 로고
    • Patient related factors in frequent readmissions: The influence of condition, access to services and patient choice
    • Kirby SE, Dennis SM, Jayasinghe UW, et al. Patient related factors in frequent readmissions: the influence of condition, access to services and patient choice. BMC Health Serv Res 2010;10:216.
    • (2010) BMC Health Serv Res , vol.10 , pp. 216
    • Kirby, S.E.1    Dennis, S.M.2    Jayasinghe, U.W.3
  • 63
    • 17144362818 scopus 로고    scopus 로고
    • Improving clinical practice using clinical decision support systems: A systematic review of trials to identify features critical to success
    • Kawamoto K, Houlihan CA, Balas EA, et al. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ 2005;330:765.
    • (2005) BMJ , vol.330 , pp. 765
    • Kawamoto, K.1    Houlihan, C.A.2    Balas, E.A.3
  • 64
    • 0242664599 scopus 로고    scopus 로고
    • Ten commandments for effective clinical decision support: Making the practice of evidence-based medicine a reality
    • Bates DW, Kuperman GJ, Wang S, et al. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J Am Med Inform Assoc 2003;10:523-30.
    • (2003) J Am Med Inform Assoc , vol.10 , pp. 523-530
    • Bates, D.W.1    Kuperman, G.J.2    Wang, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.