메뉴 건너뛰기




Volumn 0, Issue , 2016, Pages 303-310

Detection of Cyber-Physical Faults and Intrusions from Physical Correlations

Author keywords

Critical infrastructures; Cyber physical systems; Intrusion localization; Outlier detection

Indexed keywords

ANOMALY DETECTION; AUTOMATION; CRITICAL INFRASTRUCTURES; DATA MINING; EMBEDDED SYSTEMS; FAULT DETECTION; INTELLIGENT BUILDINGS; INTRUSION DETECTION; PUBLIC WORKS;

EID: 85015196546     PISSN: 23759232     EISSN: 23759259     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2016.0050     Document Type: Conference Paper
Times cited : (11)

References (29)
  • 3
    • 85084140752 scopus 로고    scopus 로고
    • Research challenges for the security of control systems
    • A. A. Cárdenas, S. Amin, and S. Sastry, Research challenges for the security of control systems. in HotSec, 2008.
    • (2008) HotSec
    • Cárdenas, A.A.1    Amin, S.2    Sastry, S.3
  • 6
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • S. Fortunato, Community detection in graphs, Physics Reports, vol. 486, no. 3-5, pp. 75-174, 2010.
    • (2010) Physics Reports , vol.486 , Issue.3-5 , pp. 75-174
    • Fortunato, S.1
  • 7
    • 79952708259 scopus 로고    scopus 로고
    • The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices
    • F. Benaych-Georges and R. R. Nadakuditi, The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices, Advances in Mathematics, vol. 227, no. 1, pp. 494-521, 2011.
    • (2011) Advances in Mathematics , vol.227 , Issue.1 , pp. 494-521
    • Benaych-Georges, F.1    Nadakuditi, R.R.2
  • 8
    • 77951254878 scopus 로고    scopus 로고
    • Graph partitioning via adaptive spectral techniques
    • A. Coja-Oghlan, Graph partitioning via adaptive spectral techniques, Comb. Probab. Comp., vol. 19, no. 02, pp. 227-284, 2010.
    • (2010) Comb. Probab. Comp , vol.19 , Issue.2 , pp. 227-284
    • Coja-Oghlan, A.1
  • 9
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, vol. 1, no. 3, pp. 211-218, 1936.
    • (1936) Psychometrika , vol.1 , Issue.3 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 10
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • A. dAspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet, A direct formulation for sparse PCA using semidefinite programming, SIAM Review, vol. 49, no. 3, pp. 434-448, 2007.
    • (2007) SIAM Review , vol.49 , Issue.3 , pp. 434-448
    • Daspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.4
  • 12
    • 0036018630 scopus 로고    scopus 로고
    • Low-rank approximations with sparse factors I: Basic algorithms and error analysis
    • Z. Zhang, H. Zha, and H. Simon, Low-rank approximations with sparse factors I: Basic algorithms and error analysis, SIAM J. Matrix Anal. Appl., vol. 23, no. 3, pp. 706-727, 2002.
    • (2002) SIAM J. Matrix Anal. Appl , vol.23 , Issue.3 , pp. 706-727
    • Zhang, Z.1    Zha, H.2    Simon, H.3
  • 13
    • 0010063566 scopus 로고
    • Who belongs in the family?
    • R. L. Thorndike, Who belongs in the family? Psychometrika, vol. 18, no. 4, pp. 267-276, 1953.
    • (1953) Psychometrika , vol.18 , Issue.4 , pp. 267-276
    • Thorndike, R.L.1
  • 15
    • 84938847112 scopus 로고    scopus 로고
    • Finding hidden cliques of size N=e in nearly linear time
    • Yp. Deshpande and A. Montanari, Finding hidden cliques of size N=e in nearly linear time, Foundations of Computational Mathematics, vol. 15, no. 4, pp. 1069-1128, 2015.
    • (2015) Foundations of Computational Mathematics , vol.15 , Issue.4 , pp. 1069-1128
    • Deshpande, Yp.1    Montanari, A.2
  • 17
    • 85080649881 scopus 로고    scopus 로고
    • Energy landscape for large average submatrix detection problems in Gaussian random matrices
    • S. Bhamidi, P. S. Dey, and A. B. Nobel, Energy landscape for large average submatrix detection problems in Gaussian random matrices, arXiv preprint arXiv:1211.2284, 2012.
    • (2012) ArXiv Preprint ArXiv 1211.2284
    • Bhamidi, S.1    Dey, P.S.2    Nobel, A.B.3
  • 19
    • 84903199006 scopus 로고    scopus 로고
    • Model development and identification for fast demand response in commercial HVAC systems
    • G. Goddard, J. Klose, and S. Backhaus, Model development and identification for fast demand response in commercial HVAC systems, IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 2084-2092, 2014.
    • (2014) IEEE Trans. Smart Grid , vol.5 , Issue.4 , pp. 2084-2092
    • Goddard, G.1    Klose, J.2    Backhaus, S.3
  • 21
    • 84924597741 scopus 로고    scopus 로고
    • Modeling and analysis of attacks and counter defense mechanisms for cyber physical systems
    • March
    • R. Mitchell and I. R. Chen, Modeling and analysis of attacks and counter defense mechanisms for cyber physical systems, IEEE Transactions on Reliability, vol. 65, no. 1, pp. 350-358, March 2016.
    • (2016) IEEE Transactions on Reliability , vol.65 , Issue.1 , pp. 350-358
    • Mitchell, R.1    Chen, I.R.2
  • 25
    • 77955082590 scopus 로고    scopus 로고
    • Outlier detection techniques for wireless sensor networks: A survey
    • IEEE
    • Y. Zhang, N. Meratnia, and P. Havinga, Outlier detection techniques for wireless sensor networks: A survey, Communications Surveys &Tutorials, IEEE, vol. 12, no. 2, pp. 159-170, 2010.
    • (2010) Communications Surveys &Tutorials , vol.12 , Issue.2 , pp. 159-170
    • Zhang, Y.1    Meratnia, N.2    Havinga, P.3
  • 27
    • 0026260103 scopus 로고
    • The SVD and reduced rank signal processing
    • L. L. Scharf, The svd and reduced rank signal processing, Signal processing, vol. 25, no. 2, pp. 113-133, 1991.
    • (1991) Signal Processing , vol.25 , Issue.2 , pp. 113-133
    • Scharf, L.L.1
  • 28
    • 84899641400 scopus 로고    scopus 로고
    • Optshrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage
    • R. R. Nadakuditi, Optshrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage, IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 3002-3018, 2014.
    • (2014) IEEE Trans. Inf. Theory , vol.60 , Issue.5 , pp. 3002-3018
    • Nadakuditi, R.R.1
  • 29
    • 84922519987 scopus 로고    scopus 로고
    • Matrix estimation by universal singular value thresholding
    • S. Chatterjee et al., Matrix estimation by universal singular value thresholding, Ann. Stat., vol. 43, no. 1, pp. 177-214, 2015.
    • (2015) Ann. Stat , vol.43 , Issue.1 , pp. 177-214
    • Chatterjee, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.