메뉴 건너뛰기




Volumn 60, Issue 5, 2014, Pages 3002-3018

OptShrink: An algorithm for improved low-rank signal matrix Denoising by optimal, data-driven singular value shrinkage

Author keywords

free probability; Haar measure; informational limit; phase transition; principal components analysis; random eigenvalues; random eigenvectors; Random matrices; random perturbation; sample covariance matrices.

Indexed keywords

ALGORITHMS; COVARIANCE MATRIX; EIGENVALUES AND EIGENFUNCTIONS; GAUSSIAN NOISE (ELECTRONIC); OPTIMIZATION; PHASE TRANSITIONS; PRINCIPAL COMPONENT ANALYSIS; RANDOM PROCESSES; RANDOM VARIABLES; SHRINKAGE;

EID: 84899641400     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2014.2311661     Document Type: Article
Times cited : (164)

References (89)
  • 2
    • 27644476898 scopus 로고    scopus 로고
    • Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
    • DOI 10.1214/009117905000000233
    • J. Baik, G. Ben Arous, and S. Pch, Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab., vol. 33, no. 5, pp. 1643-1697, 2005. (Pubitemid 41560766)
    • (2005) Annals of Probability , vol.33 , Issue.5 , pp. 1643-1697
    • Baik, J.1    Arous, G.B.2    Peche, S.3
  • 3
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • DOI 10.1016/j.jmva.2005.08.003, PII S0047259X0500134X
    • J. Baik and J. W. Silverstein, Eigenvalues of large sample covariance matrices of spiked population models, J. Multivariate Anal., vol. 97, no. 6, pp. 1382-1408, 2006. (Pubitemid 43705671)
    • (2006) Journal of Multivariate Analysis , vol.97 , Issue.6 , pp. 1382-1408
    • Baik, J.1    Silverstein, J.W.2
  • 4
    • 84881529077 scopus 로고    scopus 로고
    • Extreme gaps between eigenvalues of random matrices
    • G. Ben Arous and P. Bourgade, Extreme gaps between eigenvalues of random matrices, Ann. Probab., vol. 41, no. 4, pp. 2648-2681, 2013.
    • (2013) Ann. Probab , vol.41 , Issue.4 , pp. 2648-2681
    • Ben Arous, G.1    Bourgade, P.2
  • 5
    • 84862305511 scopus 로고    scopus 로고
    • The singular values and vectors of low rank perturbations of large rectangular random matrices
    • Oct
    • F. Benaych-Georges and R. R. Nadakuditi, The singular values and vectors of low rank perturbations of large rectangular random matrices, J. Multivariate Anal., vol. 111, pp. 120-135, Oct. 2012.
    • (2012) J. Multivariate Anal , vol.111 , pp. 120-135
    • Benaych-Georges, F.1    Nadakuditi, R.R.2
  • 6
    • 64849109012 scopus 로고    scopus 로고
    • Rectangular random matrices, related convolution
    • F. Benaych-Georges, Rectangular random matrices, related convolution, Probab. Theory Rel. Fields, vol. 144, nos. 3-4, pp. 471-515, 2009.
    • (2009) Probab. Theory Rel. Fields , vol.144 , Issue.3-4 , pp. 471-515
    • Benaych-Georges, F.1
  • 7
    • 84879351019 scopus 로고    scopus 로고
    • Minimax bounds for sparse PCA with noisy high-dimensional data
    • A. Birnbaum, I. M. Johnstone, B. Nadler, and D. Paul, Minimax bounds for sparse PCA with noisy high-dimensional data, Ann. Statist., vol. 41, no. 3, pp. 1055-1084, 2013.
    • (2013) Ann. Statist , vol.41 , Issue.3 , pp. 1055-1084
    • Birnbaum, A.1    Johnstone, I.M.2    Nadler, B.3    Paul, D.4
  • 10
    • 36749071484 scopus 로고    scopus 로고
    • SVD based initialization: A head start for nonnegative matrix factorization
    • DOI 10.1016/j.patcog.2007.09.010, PII S0031320307004359
    • C. Boutsidis and E. Gallopoulos, SVD based initialization: A head start for nonnegative matrix factorization, Pattern Recognit., vol. 41, no. 4, pp. 1350-1362, 2008. (Pubitemid 350212975)
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1350-1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 11
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • L. Breiman, Better subset regression using the nonnegative garrote, Technometrics, vol. 37, no. 4, pp. 373-384, 1995.
    • (1995) Technometrics , vol.37 , Issue.4 , pp. 373-384
    • Breiman, L.1
  • 13
    • 0026261255 scopus 로고
    • Enhanced rational signal modeling
    • J. A. Cadzow and D. M. Wilkes, Enhanced rational signal modeling, Signal Process., vol. 25, no. 2, pp. 171-188, 1991.
    • (1991) Signal Process , vol.25 , Issue.2 , pp. 171-188
    • Cadzow, J.A.1    Wilkes, D.M.2
  • 14
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • J. F. Cai, E. J. Cands, and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim., vol. 20, no. 4, pp. 1956-1982, 2010.
    • (2010) SIAM J. Optim , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.F.1    Cands, E.J.2    Shen, Z.3
  • 15
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • Jun.
    • E. J. Cands, X. Li, Y. Ma, and J. Wright, Robust principal component analysis? J. ACM, vol. 58, no. 3, pp. 11:1-11:37, Jun. 2011.
    • (2011) J ACM , vol.58 , Issue.3 , pp. 111-1137
    • Cands, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 16
    • 77952741387 scopus 로고    scopus 로고
    • Matrix completion with noise
    • Jun.
    • E. J. Candes and Y. Plan, Matrix completion with noise, Proc. IEEE, vol. 98, no. 6, pp. 925-936, Jun. 2010.
    • (2010) Proc IEEE , vol.98 , Issue.6 , pp. 925-936
    • Candes, E.J.1    Plan, Y.2
  • 17
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • E. J. Cands and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., vol. 9, no. 6, pp. 717-772, 2009.
    • (2009) Found. Comput. Math , vol.9 , Issue.6 , pp. 717-772
    • Cands, E.J.1    Recht, B.2
  • 18
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Nearoptimal matrix completion
    • May
    • E. J. Cands and T. Tao, The power of convex relaxation: Nearoptimal matrix completion, IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2053-2080, May 2010.
    • (2010) IEEE Trans. Inf. Theory , vol.56 , Issue.5 , pp. 2053-2080
    • Cands, E.J.1    Tao, T.2
  • 22
    • 3242717928 scopus 로고    scopus 로고
    • Recovering the missing components in a large noisy low-rank matrix: Application to SFM
    • Aug
    • P. Chen and D. Suter, Recovering the missing components in a large noisy low-rank matrix: Application to SFM, IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 8, pp. 1051-1063, Aug. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell , vol.26 , Issue.8 , pp. 1051-1063
    • Chen, P.1    Suter, D.2
  • 24
    • 0026909431 scopus 로고
    • Signal detection via spectral theory of large dimensional random matrices
    • Aug
    • P. L. Combettes and J. W. Silverstein, Signal detection via spectral theory of large dimensional random matrices, IEEE Trans. Signal Process., vol. 8, no. 40, pp. 2100-2105, Aug. 1992.
    • (1992) IEEE Trans. Signal Process , vol.8 , Issue.40 , pp. 2100-2105
    • Combettes, P.L.1    Silverstein, J.W.2
  • 26
    • 48849086355 scopus 로고    scopus 로고
    • Optimal solutions for sparse principal component analysis
    • Jun
    • A. dAspremont, F. Bach, and L. El Ghaoui, Optimal solutions for sparse principal component analysis, J. Mach. Learn. Res., vol. 9, pp. 1269-1294, Jun. 2008.
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 1269-1294
    • Daspremont, A.1    Bach, F.2    El Ghaoui, L.3
  • 28
    • 33751075906 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix
    • DOI 10.1137/S0097539704442696
    • P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix, SIAM J. Comput., vol. 36, no. 1, pp. 158-183, 2006. (Pubitemid 46374022)
    • (2006) SIAM Journal on Computing , vol.36 , Issue.1 , pp. 158-183
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 29
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, vol. 1, no. 3, pp. 211-218, 1936.
    • (1936) Psychometrika , vol.1 , Issue.3 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 30
    • 46749089905 scopus 로고    scopus 로고
    • Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices
    • N. El Karoui, Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices, Ann. Probab., vol. 35, no. 2, pp. 663-714, 2007.
    • (2007) Ann. Probab , vol.35 , Issue.2 , pp. 663-714
    • El Karoui, N.1
  • 31
    • 84863099462 scopus 로고    scopus 로고
    • Universality of local spectral statistics of random matrices
    • L. Erd?os and H.-T. Yau, Universality of local spectral statistics of random matrices, Bull. Amer. Math. Soc., vol. 49, no. 3, pp. 377-414, 2012.
    • (2012) Bull. Amer. Math. Soc , vol.49 , Issue.3 , pp. 377-414
    • Erdos, L.1    Yau, H.-T.2
  • 33
    • 68749084936 scopus 로고    scopus 로고
    • The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case
    • D. Fral and S. Pch, The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case, J. Math. Phys., vol. 50, no. 7, p. 073302, 2009.
    • (2009) J. Math. Phys , vol.50 , Issue.7 , pp. 073302
    • Fral, D.1    Pch, S.2
  • 34
    • 45949115772 scopus 로고
    • A generalization of the Eckart-Young-Mirsky matrix approximation theorem
    • Apr
    • G. H. Golub, A. Hoffman, and G. W. Stewart, A generalization of the Eckart-Young-Mirsky matrix approximation theorem, Linear Algebra Appl., vol. 88, pp. 317-327, Apr. 1987.
    • (1987) Linear Algebra Appl , vol.88 , pp. 317-327
    • Golub, G.H.1    Hoffman, A.2    Stewart, G.W.3
  • 35
    • 84867821717 scopus 로고    scopus 로고
    • A subspace estimator for fixed rank perturbations of large random matrices
    • Feb
    • W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet, A subspace estimator for fixed rank perturbations of large random matrices, J. Multivariate Anal., vol. 114, pp. 427-447, Feb. 2013.
    • (2013) J. Multivariate Anal , vol.114 , pp. 427-447
    • Hachem, W.1    Loubaton, P.2    Mestre, X.3    Najim, J.4    Vallet, P.5
  • 37
    • 85006518495 scopus 로고    scopus 로고
    • Learning gaussian mixture models: Moment methods and spectral decompositions
    • D. Hsu and S. M. Kakade, Learning gaussian mixture models: Moment methods and spectral decompositions, in Proc. 4th Conf. ITCS, 2012, pp. 11-20.
    • (2012) Proc. 4th Conf. ITCS , pp. 11-20
    • Hsu, D.1    Kakade, S.M.2
  • 39
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • I. M. Johnstone and A. Lu, On consistency and sparsity for principal components analysis in high dimensions, J. Amer. Statist. Assoc., vol. 104, no. 486, pp. 682-693, 2009.
    • (2009) J. Amer. Statist. Assoc , vol.104 , Issue.486 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.2
  • 40
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • I. M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist., vol. 29, no. 2, pp. 295-327, 2001.
    • (2001) Ann. Statist , vol.29 , Issue.2 , pp. 295-327
    • Johnstone, I.M.1
  • 41
    • 79961039847 scopus 로고    scopus 로고
    • High dimensional statistical inference and random matrices
    • I. M. Johnstone, High dimensional statistical inference and random matrices, in Proc. Int. Congr. Math., Madrid, 2006, pp. 307-333.
    • (2006) Proc. Int. Congr. Math., Madrid , pp. 307-333
    • Johnstone, I.M.1
  • 43
    • 84859411801 scopus 로고    scopus 로고
    • Regularization techniques for learning with matrices
    • Mar
    • S. M. Kakade, S. Shalev-Shwartz, and A. Tewari, Regularization techniques for learning with matrices, J. Mach. Learn. Res., vol. 13, pp. 1865-1890, Mar. 2012.
    • (2012) J. Mach. Learn. Res , vol.13 , pp. 1865-1890
    • Kakade, S.M.1    Shalev-Shwartz, S.2    Tewari, A.3
  • 44
  • 47
    • 77956897560 scopus 로고    scopus 로고
    • Matrix completion from a few entries
    • Jun.
    • R. H. Keshavan, A. Montanari, and S. Oh, Matrix completion from a few entries, IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2980-2998, Jun. 2010.
    • (2010) IEEE Trans. Inf. Theory , vol.56 , Issue.6 , pp. 2980-2998
    • Keshavan, R.H.1    Montanari, A.2    Oh, S.3
  • 48
    • 0019009028 scopus 로고
    • Singular value decomposition: Its computation and some applications
    • V. C. Klema and A. Laub, The singular value decomposition: Its computation and some applications, IEEE Trans. Autom. Control, vol. 25, no. 2, pp. 164-176, Apr. 1980. (Pubitemid 10475293)
    • (1980) IEEE Transactions on Automatic Control , vol.AC-25 , Issue.2 , pp. 164-176
    • Klema Virginia, C.1    Laub Alan, J.2
  • 49
    • 82655171609 scopus 로고    scopus 로고
    • Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion
    • V. Koltchinskii, K. Lounici, and A. B. Tsybakov, Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion, Ann. Statist., vol. 39, no. 5, pp. 2302-2329, 2011.
    • (2011) Ann. Statist , vol.39 , Issue.5 , pp. 2302-2329
    • Koltchinskii, V.1    Lounici, K.2    Tsybakov, A.B.3
  • 50
    • 50249159453 scopus 로고    scopus 로고
    • Determining the number of components in a factor model from limited noisy data
    • S. Kritchman and B. Nadler, Determining the number of components in a factor model from limited noisy data, Chemom. Intell. Lab. Syst., vol. 94, no. 1, pp. 19-32, 2008.
    • (2008) Chemom. Intell. Lab. Syst , vol.94 , Issue.1 , pp. 19-32
    • Kritchman, S.1    Nadler, B.2
  • 51
    • 70349646485 scopus 로고    scopus 로고
    • Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory
    • Oct
    • S. Kritchman and B. Nadler, Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory, IEEE Trans. Signal Process., vol. 57, no. 10, pp. 3930-3941, Oct. 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.10 , pp. 3930-3941
    • Kritchman, S.1    Nadler, B.2
  • 53
    • 18144366601 scopus 로고    scopus 로고
    • Some estimates of norms of random matrices
    • R. Lata?a, Some estimates of norms of random matrices, Proc. Amer. Math. Soc., vol. 133, no. 5, pp. 1273-1282, 2005.
    • (2005) Proc. Amer. Math. Soc , vol.133 , Issue.5 , pp. 1273-1282
    • Lataa, R.1
  • 55
    • 0031075386 scopus 로고    scopus 로고
    • A parameter estimation scheme for damped sinusoidal signals based on low-rank hankel approximation
    • PII S1053587X97011872
    • Y. Li, K. J. R. Liu, and J. Razavilar, A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation, IEEE Trans. Signal Process., vol. 45, no. 2, pp. 481-486, Feb. 1997. (Pubitemid 127765912)
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.2 , pp. 481-486
    • Li, Y.1    Ray Liu, K.J.2    Razavilar, J.3
  • 56
    • 0000263239 scopus 로고
    • Distribution of eigenvalues for some sets of random matrices
    • V. A. Marchenko and L. A. Pastur, Distribution of eigenvalues for some sets of random matrices, Matematicheskii Sbornik, vol. 114, no. 4, pp. 507-536, 1967.
    • (1967) Matematicheskii Sbornik , vol.114 , Issue.4 , pp. 507-536
    • Marchenko, V.A.1    Pastur, L.A.2
  • 57
    • 41049114357 scopus 로고    scopus 로고
    • Structured low-rank approximation and its applications
    • I. Markovsky, Structured low-rank approximation and its applications, Automatica, vol. 44, no. 4, pp. 891-909, 2008.
    • (2008) Automatica , vol.44 , Issue.4 , pp. 891-909
    • Markovsky, I.1
  • 58
    • 0002824680 scopus 로고
    • Symmetric gauge functions and unitarily invariant norms
    • L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math., vol. 11, no. 1, pp. 50-59, 1960.
    • (1960) Quart. J. Math , vol.11 , Issue.1 , pp. 50-59
    • Mirsky, L.1
  • 59
  • 61
    • 84860628853 scopus 로고    scopus 로고
    • Graph spectra and the detectability of community structure in networks
    • R. R. Nadakuditi and M. E. J. Newman, Graph spectra and the detectability of community structure in networks, Phys. Rev. Lett., vol. 108, no. 18, p. 188701, 2012.
    • (2012) Phys. Rev. Lett , vol.108 , Issue.18 , pp. 188701
    • Nadakuditi, R.R.1    Newman, M.E.J.2
  • 62
    • 84872503160 scopus 로고    scopus 로고
    • Spectra of random graphs with arbitrary expected degrees
    • R. R. Nadakuditi and M. E. J. Newman, Spectra of random graphs with arbitrary expected degrees, Phys. Rev. E, vol. 87, no. 1, p. 012803, 2013.
    • (2013) Phys. Rev. e , vol.87 , Issue.1 , pp. 012803
    • Nadakuditi, R.R.1    Newman, M.E.J.2
  • 63
    • 46749116893 scopus 로고    scopus 로고
    • Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples
    • Jul
    • R. R. Nadakuditi and A. Edelman, Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples, IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2625-2638, Jul. 2008.
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.7 , pp. 2625-2638
    • Nadakuditi, R.R.1    Edelman, A.2
  • 64
    • 77951177861 scopus 로고    scopus 로고
    • Nonparametric detection of signals by information theoretic criteria: Performance analysis and an improved estimator
    • May
    • B. Nadler, Nonparametric detection of signals by information theoretic criteria: Performance analysis and an improved estimator, IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2746-2756, May 2010.
    • (2010) IEEE Trans. Signal Process , vol.58 , Issue.5 , pp. 2746-2756
    • Nadler, B.1
  • 66
    • 70349835782 scopus 로고    scopus 로고
    • Testing hypotheses about the numbers of factors in large factor models
    • A. Onatski, Testing hypotheses about the numbers of factors in large factor models, Econometrica, vol. 77, no. 5, pp. 1447-1479, 2009.
    • (2009) Econometrica , vol.77 , Issue.5 , pp. 1447-1479
    • Onatski, A.1
  • 67
    • 78650967353 scopus 로고    scopus 로고
    • Determining the number of factors from empirical distribution of eigenvalues
    • A. Onatski, Determining the number of factors from empirical distribution of eigenvalues, Rev. Econ. Statist., vol. 92, no. 4, pp. 1004-1016, 2010.
    • (2010) Rev. Econ. Statist , vol.92 , Issue.4 , pp. 1004-1016
    • Onatski, A.1
  • 68
    • 84928499652 scopus 로고    scopus 로고
    • On determining the number of spikes in a high-dimensional spiked population model
    • D. Passemier and J.-F. Yao, On determining the number of spikes in a high-dimensional spiked population model, Random Matrices, Theory Appl., vol. 1, no. 1, p. 1150002, 2012.
    • (2012) Random Matrices, Theory Appl , vol.1 , Issue.1 , pp. 1150002
    • Passemier, D.1    Yao, J.-F.2
  • 70
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
    • D. Paul, Asymptotics of sample eigenstructure for a large dimensional spiked covariance model, Statist. Sinica, vol. 17, no. 4, pp. 1617-1642, 2007.
    • (2007) Statist. Sinica , vol.17 , Issue.4 , pp. 1617-1642
    • Paul, D.1
  • 71
    • 59449098080 scopus 로고    scopus 로고
    • Universality results for the largest eigenvalues of some sample covariance matrix ensembles
    • S. Pch, Universality results for the largest eigenvalues of some sample covariance matrix ensembles, Probab. Theory Rel. Fields, vol. 143, nos. 3-4, pp. 481-516, 2009.
    • (2009) Probab. Theory Rel. Fields , vol.143 , Issue.3-4 , pp. 481-516
    • Pch, S.1
  • 72
    • 85006522418 scopus 로고    scopus 로고
    • Universality of covariance matrices
    • N. S. Pillai and J. Yin, Universality of covariance matrices, Oct. 2011.
    • (2011) Oct
    • Pillai, N.S.1    Yin, J.2
  • 73
    • 79952902758 scopus 로고    scopus 로고
    • Estimation of high-dimensional lowrank matrices
    • A. Rohde and A. B. Tsybakov, Estimation of high-dimensional lowrank matrices, Ann. Statist., vol. 39, no. 2, pp. 887-930, 2011.
    • (2011) Ann. Statist , vol.39 , Issue.2 , pp. 887-930
    • Rohde, A.1    Tsybakov, A.B.2
  • 75
    • 84871560604 scopus 로고    scopus 로고
    • Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting
    • J. Saunderson, V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting, SIAM J. Matrix Anal. Appl., vol. 33, no. 4, pp. 1395-1416, 2012.
    • (2012) SIAM J. Matrix Anal. Appl , vol.33 , Issue.4 , pp. 1395-1416
    • Saunderson, J.1    Chandrasekaran, V.2    Parrilo, P.A.3    Willsky, A.S.4
  • 76
    • 0026260103 scopus 로고
    • The SVD and reduced rank signal processing
    • L. L. Scharf, The SVD and reduced rank signal processing, Signal Process., vol. 25, no. 2, p. 113, 1991.
    • (1991) Signal Process , vol.25 , Issue.2 , pp. 113
    • Scharf, L.L.1
  • 77
    • 84876797915 scopus 로고    scopus 로고
    • Reconstruction of a low-rank matrix in the presence of Gaussian noise
    • Jul
    • A. A. Shabalin and A. B. Nobel, Reconstruction of a low-rank matrix in the presence of Gaussian noise, J. Multivariate Anal., vol. 118, pp. 67-76, Jul. 2013.
    • (2013) J. Multivariate Anal , vol.118 , pp. 67-76
    • Shabalin, A.A.1    Nobel, A.B.2
  • 78
    • 58149320175 scopus 로고
    • Analysis of the limiting spectral distribution of large dimensional random matrices
    • J. W. Silverstein and S.-I. Choi, Analysis of the limiting spectral distribution of large dimensional random matrices, J. Multivariate Anal., vol. 54, no. 2, pp. 295-309, 1995.
    • (1995) J. Multivariate Anal , vol.54 , Issue.2 , pp. 295-309
    • Silverstein, J.W.1    Choi, S.-I.2
  • 79
    • 0141450345 scopus 로고    scopus 로고
    • A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices
    • A. Soshnikov, A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices, J. Statist. Phys., vol. 108, nos. 5-6, pp. 1033-1056, 2002.
    • (2002) J. Statist. Phys , vol.108 , Issue.5-6 , pp. 1033-1056
    • Soshnikov, A.1
  • 80
    • 79957510064 scopus 로고    scopus 로고
    • Recovering low-rank and sparse components of matrices from incomplete and noisy observations
    • M. Tao and X. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., vol. 21, no. 1, pp. 57-81, 2011.
    • (2011) SIAM J. Optim , vol.21 , Issue.1 , pp. 57-81
    • Tao, M.1    Yuan, X.2
  • 82
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • M. E. Tipping and C. M. Bishop, Mixtures of probabilistic principal component analyzers, Neural Comput., vol. 11, no. 2, pp. 443-482, 1999.
    • (1999) Neural Comput , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 83
    • 0027574562 scopus 로고
    • Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix
    • Apr
    • D. W. Tufts and A. A. Shah, Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix, IEEE Trans. Signal Process., vol. 41, no. 4, pp. 1716-1721, Apr. 1993.
    • (1993) IEEE Trans. Signal Process , vol.41 , Issue.4 , pp. 1716-1721
    • Tufts, D.W.1    Shah, A.A.2
  • 84
    • 58049218569 scopus 로고    scopus 로고
    • Dimension estimation in noisy PCA with SURE and random matrix theory
    • Dec
    • M. O. Ulfarsson and V. Solo, Dimension estimation in noisy PCA with SURE and random matrix theory, IEEE Trans. Signal Process., vol. 56, no. 12, pp. 5804-5816, Dec. 2008.
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.12 , pp. 5804-5816
    • Ulfarsson, M.O.1    Solo, V.2
  • 88
    • 0036018630 scopus 로고    scopus 로고
    • Low-rank approximations with sparse factors I: Basic algorithms and error analysis
    • Z. Zhang, H. Zha, and H. Simon, Low-rank approximations with sparse factors I: Basic algorithms and error analysis, SIAM J. Matrix Anal. Appl., vol. 23, no. 3, pp. 706-727, 2002.
    • (2002) SIAM J. Matrix Anal. Appl , vol.23 , Issue.3 , pp. 706-727
    • Zhang, Z.1    Zha, H.2    Simon, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.