-
2
-
-
27644476898
-
Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
-
DOI 10.1214/009117905000000233
-
J. Baik, G. Ben Arous, and S. Pch, Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices, Ann. Probab., vol. 33, no. 5, pp. 1643-1697, 2005. (Pubitemid 41560766)
-
(2005)
Annals of Probability
, vol.33
, Issue.5
, pp. 1643-1697
-
-
Baik, J.1
Arous, G.B.2
Peche, S.3
-
3
-
-
33646507506
-
Eigenvalues of large sample covariance matrices of spiked population models
-
DOI 10.1016/j.jmva.2005.08.003, PII S0047259X0500134X
-
J. Baik and J. W. Silverstein, Eigenvalues of large sample covariance matrices of spiked population models, J. Multivariate Anal., vol. 97, no. 6, pp. 1382-1408, 2006. (Pubitemid 43705671)
-
(2006)
Journal of Multivariate Analysis
, vol.97
, Issue.6
, pp. 1382-1408
-
-
Baik, J.1
Silverstein, J.W.2
-
4
-
-
84881529077
-
Extreme gaps between eigenvalues of random matrices
-
G. Ben Arous and P. Bourgade, Extreme gaps between eigenvalues of random matrices, Ann. Probab., vol. 41, no. 4, pp. 2648-2681, 2013.
-
(2013)
Ann. Probab
, vol.41
, Issue.4
, pp. 2648-2681
-
-
Ben Arous, G.1
Bourgade, P.2
-
5
-
-
84862305511
-
The singular values and vectors of low rank perturbations of large rectangular random matrices
-
Oct
-
F. Benaych-Georges and R. R. Nadakuditi, The singular values and vectors of low rank perturbations of large rectangular random matrices, J. Multivariate Anal., vol. 111, pp. 120-135, Oct. 2012.
-
(2012)
J. Multivariate Anal
, vol.111
, pp. 120-135
-
-
Benaych-Georges, F.1
Nadakuditi, R.R.2
-
6
-
-
64849109012
-
Rectangular random matrices, related convolution
-
F. Benaych-Georges, Rectangular random matrices, related convolution, Probab. Theory Rel. Fields, vol. 144, nos. 3-4, pp. 471-515, 2009.
-
(2009)
Probab. Theory Rel. Fields
, vol.144
, Issue.3-4
, pp. 471-515
-
-
Benaych-Georges, F.1
-
7
-
-
84879351019
-
Minimax bounds for sparse PCA with noisy high-dimensional data
-
A. Birnbaum, I. M. Johnstone, B. Nadler, and D. Paul, Minimax bounds for sparse PCA with noisy high-dimensional data, Ann. Statist., vol. 41, no. 3, pp. 1055-1084, 2013.
-
(2013)
Ann. Statist
, vol.41
, Issue.3
, pp. 1055-1084
-
-
Birnbaum, A.1
Johnstone, I.M.2
Nadler, B.3
Paul, D.4
-
8
-
-
84899651851
-
-
arXiv: 1308.5729
-
A. Bloemendal, L. Erd?os, A. Knowles, H.-T. Yau, and J. Yin, Isotropic local laws for sample covariance and generalized Wigner matrices, arXiv: 1308.5729.
-
Isotropic Local Laws for Sample Covariance and Generalized Wigner Matrices
-
-
Bloemendal, A.1
Erdos, L.2
Knowles, A.3
Yau, H.-T.4
Yin, J.5
-
10
-
-
36749071484
-
SVD based initialization: A head start for nonnegative matrix factorization
-
DOI 10.1016/j.patcog.2007.09.010, PII S0031320307004359
-
C. Boutsidis and E. Gallopoulos, SVD based initialization: A head start for nonnegative matrix factorization, Pattern Recognit., vol. 41, no. 4, pp. 1350-1362, 2008. (Pubitemid 350212975)
-
(2008)
Pattern Recognition
, vol.41
, Issue.4
, pp. 1350-1362
-
-
Boutsidis, C.1
Gallopoulos, E.2
-
11
-
-
84874257732
-
Better subset regression using the nonnegative garrote
-
L. Breiman, Better subset regression using the nonnegative garrote, Technometrics, vol. 37, no. 4, pp. 373-384, 1995.
-
(1995)
Technometrics
, vol.37
, Issue.4
, pp. 373-384
-
-
Breiman, L.1
-
12
-
-
84877671972
-
-
C. Cacciapuoti, A. Maltsev, and B. Schlein, Local Marchenko-Pastur law at the hard edge of sample covariance matrices, vol. 54, no. 4, p. 043302, 2012.
-
(2012)
Local Marchenko-Pastur Law at the Hard Edge of Sample Covariance Matrices
, vol.54
, Issue.4
, pp. 043302
-
-
Cacciapuoti, C.1
Maltsev, A.2
Schlein, B.3
-
13
-
-
0026261255
-
Enhanced rational signal modeling
-
J. A. Cadzow and D. M. Wilkes, Enhanced rational signal modeling, Signal Process., vol. 25, no. 2, pp. 171-188, 1991.
-
(1991)
Signal Process
, vol.25
, Issue.2
, pp. 171-188
-
-
Cadzow, J.A.1
Wilkes, D.M.2
-
14
-
-
77951291046
-
A singular value thresholding algorithm for matrix completion
-
J. F. Cai, E. J. Cands, and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim., vol. 20, no. 4, pp. 1956-1982, 2010.
-
(2010)
SIAM J. Optim
, vol.20
, Issue.4
, pp. 1956-1982
-
-
Cai, J.F.1
Cands, E.J.2
Shen, Z.3
-
15
-
-
79960675858
-
Robust principal component analysis?
-
Jun.
-
E. J. Cands, X. Li, Y. Ma, and J. Wright, Robust principal component analysis? J. ACM, vol. 58, no. 3, pp. 11:1-11:37, Jun. 2011.
-
(2011)
J ACM
, vol.58
, Issue.3
, pp. 111-1137
-
-
Cands, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
16
-
-
77952741387
-
Matrix completion with noise
-
Jun.
-
E. J. Candes and Y. Plan, Matrix completion with noise, Proc. IEEE, vol. 98, no. 6, pp. 925-936, Jun. 2010.
-
(2010)
Proc IEEE
, vol.98
, Issue.6
, pp. 925-936
-
-
Candes, E.J.1
Plan, Y.2
-
17
-
-
71049116435
-
Exact matrix completion via convex optimization
-
E. J. Cands and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., vol. 9, no. 6, pp. 717-772, 2009.
-
(2009)
Found. Comput. Math
, vol.9
, Issue.6
, pp. 717-772
-
-
Cands, E.J.1
Recht, B.2
-
18
-
-
77951528523
-
The power of convex relaxation: Nearoptimal matrix completion
-
May
-
E. J. Cands and T. Tao, The power of convex relaxation: Nearoptimal matrix completion, IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2053-2080, May 2010.
-
(2010)
IEEE Trans. Inf. Theory
, vol.56
, Issue.5
, pp. 2053-2080
-
-
Cands, E.J.1
Tao, T.2
-
19
-
-
77949622781
-
Sparse and low-rank matrix decompositions
-
Oct
-
V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S.Willsky, Sparse and low-rank matrix decompositions, in Proc. 47th Annu. Allerton Conf. Commun., Control, Comput., Oct. 2009, pp. 962-967.
-
(2009)
Proc. 47th Annu. Allerton Conf. Commun., Control, Comput
, pp. 962-967
-
-
Chandrasekaran, V.1
Sanghavi, S.2
Parrilo, P.A.3
Willsky, A.4
-
20
-
-
79960591511
-
Ranksparsity incoherence for matrix decomposition
-
V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, Ranksparsity incoherence for matrix decomposition, SIAM J. Optim., vol. 21, no. 2, pp. 572-596, 2011.
-
(2011)
SIAM J. Optim
, vol.21
, Issue.2
, pp. 572-596
-
-
Chandrasekaran, V.1
Sanghavi, S.2
Parrilo, P.A.3
Willsky, A.S.4
-
22
-
-
3242717928
-
Recovering the missing components in a large noisy low-rank matrix: Application to SFM
-
Aug
-
P. Chen and D. Suter, Recovering the missing components in a large noisy low-rank matrix: Application to SFM, IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 8, pp. 1051-1063, Aug. 2004.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.26
, Issue.8
, pp. 1051-1063
-
-
Chen, P.1
Suter, D.2
-
23
-
-
0037409774
-
Structured low rank approximation
-
Jun
-
M. T. Chu, R. E. Funderlic, and R. J. Plemmons, Structured low rank approximation, Linear Algebra Appl., vol. 366, pp. 157-172, Jun. 2003.
-
(2003)
Linear Algebra Appl
, vol.366
, pp. 157-172
-
-
Chu, M.T.1
Funderlic, R.E.2
Plemmons, R.J.3
-
24
-
-
0026909431
-
Signal detection via spectral theory of large dimensional random matrices
-
Aug
-
P. L. Combettes and J. W. Silverstein, Signal detection via spectral theory of large dimensional random matrices, IEEE Trans. Signal Process., vol. 8, no. 40, pp. 2100-2105, Aug. 1992.
-
(1992)
IEEE Trans. Signal Process
, vol.8
, Issue.40
, pp. 2100-2105
-
-
Combettes, P.L.1
Silverstein, J.W.2
-
26
-
-
48849086355
-
Optimal solutions for sparse principal component analysis
-
Jun
-
A. dAspremont, F. Bach, and L. El Ghaoui, Optimal solutions for sparse principal component analysis, J. Mach. Learn. Res., vol. 9, pp. 1269-1294, Jun. 2008.
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 1269-1294
-
-
Daspremont, A.1
Bach, F.2
El Ghaoui, L.3
-
27
-
-
84883382704
-
-
arXiv: 1205.1482
-
C.-A. Deledalle, S. Vaiter, G. Peyr, J. Fadili, and C. Dossal, Risk estimation for matrix recovery with spectral regularization, arXiv:1205.1482, 2012.
-
(2012)
Risk Estimation for Matrix Recovery with Spectral Regularization
-
-
Deledalle, C.-A.1
Vaiter, S.2
Peyr, G.3
Fadili, J.4
Dossal, C.5
-
28
-
-
33751075906
-
Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix
-
DOI 10.1137/S0097539704442696
-
P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix, SIAM J. Comput., vol. 36, no. 1, pp. 158-183, 2006. (Pubitemid 46374022)
-
(2006)
SIAM Journal on Computing
, vol.36
, Issue.1
, pp. 158-183
-
-
Drineas, P.1
Kannan, R.2
Mahoney, M.W.3
-
29
-
-
0000802374
-
The approximation of one matrix by another of lower rank
-
C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, vol. 1, no. 3, pp. 211-218, 1936.
-
(1936)
Psychometrika
, vol.1
, Issue.3
, pp. 211-218
-
-
Eckart, C.1
Young, G.2
-
30
-
-
46749089905
-
Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices
-
N. El Karoui, Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices, Ann. Probab., vol. 35, no. 2, pp. 663-714, 2007.
-
(2007)
Ann. Probab
, vol.35
, Issue.2
, pp. 663-714
-
-
El Karoui, N.1
-
31
-
-
84863099462
-
Universality of local spectral statistics of random matrices
-
L. Erd?os and H.-T. Yau, Universality of local spectral statistics of random matrices, Bull. Amer. Math. Soc., vol. 49, no. 3, pp. 377-414, 2012.
-
(2012)
Bull. Amer. Math. Soc
, vol.49
, Issue.3
, pp. 377-414
-
-
Erdos, L.1
Yau, H.-T.2
-
32
-
-
70349857921
-
Compressed sensing and robust recovery of low rank matrices
-
Oct
-
M. Fazel, E. J. Candes, B. Recht, and P. Parrilo, Compressed sensing and robust recovery of low rank matrices, in Proc. 42nd Asilomar Conf. Signals, Syst. Comput., Oct. 2008, pp. 1043-1047.
-
(2008)
Proc. 42nd Asilomar Conf. Signals, Syst. Comput
, pp. 1043-1047
-
-
Fazel, M.1
Candes, E.J.2
Recht, B.3
Parrilo, P.4
-
33
-
-
68749084936
-
The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case
-
D. Fral and S. Pch, The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case, J. Math. Phys., vol. 50, no. 7, p. 073302, 2009.
-
(2009)
J. Math. Phys
, vol.50
, Issue.7
, pp. 073302
-
-
Fral, D.1
Pch, S.2
-
34
-
-
45949115772
-
A generalization of the Eckart-Young-Mirsky matrix approximation theorem
-
Apr
-
G. H. Golub, A. Hoffman, and G. W. Stewart, A generalization of the Eckart-Young-Mirsky matrix approximation theorem, Linear Algebra Appl., vol. 88, pp. 317-327, Apr. 1987.
-
(1987)
Linear Algebra Appl
, vol.88
, pp. 317-327
-
-
Golub, G.H.1
Hoffman, A.2
Stewart, G.W.3
-
35
-
-
84867821717
-
A subspace estimator for fixed rank perturbations of large random matrices
-
Feb
-
W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet, A subspace estimator for fixed rank perturbations of large random matrices, J. Multivariate Anal., vol. 114, pp. 427-447, Feb. 2013.
-
(2013)
J. Multivariate Anal
, vol.114
, pp. 427-447
-
-
Hachem, W.1
Loubaton, P.2
Mestre, X.3
Najim, J.4
Vallet, P.5
-
37
-
-
85006518495
-
Learning gaussian mixture models: Moment methods and spectral decompositions
-
D. Hsu and S. M. Kakade, Learning gaussian mixture models: Moment methods and spectral decompositions, in Proc. 4th Conf. ITCS, 2012, pp. 11-20.
-
(2012)
Proc. 4th Conf. ITCS
, pp. 11-20
-
-
Hsu, D.1
Kakade, S.M.2
-
38
-
-
84862275658
-
Structured sparse principal component analysis
-
R. Jennaton, G. Obozinksi, and F. Bach, Structured sparse principal component analysis, in Proc. Int. Conf. Artif. Intell. Statist., vol. 9, pp. 366-373, 2010.
-
(2010)
Proc. Int. Conf. Artif. Intell. Statist
, vol.9
, pp. 366-373
-
-
Jennaton, R.1
Obozinksi, G.2
Bach, F.3
-
39
-
-
66549088006
-
On consistency and sparsity for principal components analysis in high dimensions
-
I. M. Johnstone and A. Lu, On consistency and sparsity for principal components analysis in high dimensions, J. Amer. Statist. Assoc., vol. 104, no. 486, pp. 682-693, 2009.
-
(2009)
J. Amer. Statist. Assoc
, vol.104
, Issue.486
, pp. 682-693
-
-
Johnstone, I.M.1
Lu, A.2
-
40
-
-
0035641726
-
On the distribution of the largest eigenvalue in principal components analysis
-
I. M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist., vol. 29, no. 2, pp. 295-327, 2001.
-
(2001)
Ann. Statist
, vol.29
, Issue.2
, pp. 295-327
-
-
Johnstone, I.M.1
-
41
-
-
79961039847
-
High dimensional statistical inference and random matrices
-
I. M. Johnstone, High dimensional statistical inference and random matrices, in Proc. Int. Congr. Math., Madrid, 2006, pp. 307-333.
-
(2006)
Proc. Int. Congr. Math., Madrid
, pp. 307-333
-
-
Johnstone, I.M.1
-
43
-
-
84859411801
-
Regularization techniques for learning with matrices
-
Mar
-
S. M. Kakade, S. Shalev-Shwartz, and A. Tewari, Regularization techniques for learning with matrices, J. Mach. Learn. Res., vol. 13, pp. 1865-1890, Mar. 2012.
-
(2012)
J. Mach. Learn. Res
, vol.13
, pp. 1865-1890
-
-
Kakade, S.M.1
Shalev-Shwartz, S.2
Tewari, A.3
-
44
-
-
85006536018
-
The spectral method for general mixture models
-
R. Kannan, H. Salmasian, and S. Vempala, The spectral method for general mixture models, in Proc. Learn. Theory, 2005, pp. 155-199.
-
(2005)
Proc. Learn. Theory
, pp. 155-199
-
-
Kannan, R.1
Salmasian, H.2
Vempala, S.3
-
46
-
-
84856118112
-
Budget-optimal crowdsourcing using low-rank matrix approximations
-
D. R. Karger, S. Oh, and D. Shah, Budget-optimal crowdsourcing using low-rank matrix approximations, in Proc. 49th Annu. Allerton Conf. Commun., Control, Comput., Sep. 2011, pp. 284-291.
-
(2011)
Proc. 49th Annu. Allerton Conf. Commun., Control, Comput., Sep
, pp. 284-291
-
-
Karger, D.R.1
Oh, S.2
Shah, D.3
-
47
-
-
77956897560
-
Matrix completion from a few entries
-
Jun.
-
R. H. Keshavan, A. Montanari, and S. Oh, Matrix completion from a few entries, IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2980-2998, Jun. 2010.
-
(2010)
IEEE Trans. Inf. Theory
, vol.56
, Issue.6
, pp. 2980-2998
-
-
Keshavan, R.H.1
Montanari, A.2
Oh, S.3
-
48
-
-
0019009028
-
Singular value decomposition: Its computation and some applications
-
V. C. Klema and A. Laub, The singular value decomposition: Its computation and some applications, IEEE Trans. Autom. Control, vol. 25, no. 2, pp. 164-176, Apr. 1980. (Pubitemid 10475293)
-
(1980)
IEEE Transactions on Automatic Control
, vol.AC-25
, Issue.2
, pp. 164-176
-
-
Klema Virginia, C.1
Laub Alan, J.2
-
49
-
-
82655171609
-
Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion
-
V. Koltchinskii, K. Lounici, and A. B. Tsybakov, Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion, Ann. Statist., vol. 39, no. 5, pp. 2302-2329, 2011.
-
(2011)
Ann. Statist
, vol.39
, Issue.5
, pp. 2302-2329
-
-
Koltchinskii, V.1
Lounici, K.2
Tsybakov, A.B.3
-
50
-
-
50249159453
-
Determining the number of components in a factor model from limited noisy data
-
S. Kritchman and B. Nadler, Determining the number of components in a factor model from limited noisy data, Chemom. Intell. Lab. Syst., vol. 94, no. 1, pp. 19-32, 2008.
-
(2008)
Chemom. Intell. Lab. Syst
, vol.94
, Issue.1
, pp. 19-32
-
-
Kritchman, S.1
Nadler, B.2
-
51
-
-
70349646485
-
Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory
-
Oct
-
S. Kritchman and B. Nadler, Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory, IEEE Trans. Signal Process., vol. 57, no. 10, pp. 3930-3941, Oct. 2009.
-
(2009)
IEEE Trans. Signal Process
, vol.57
, Issue.10
, pp. 3930-3941
-
-
Kritchman, S.1
Nadler, B.2
-
52
-
-
37149010281
-
Initializations for the nonnegative matrix factorization
-
A. N. Langville, C. D. Meyer, R. Albright, J. Cox, and D. Duling, Initializations for the nonnegative matrix factorization, in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2006, pp. 23-26.
-
(2006)
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 23-26
-
-
Langville, A.N.1
Meyer, C.D.2
Albright, R.3
Cox, J.4
Duling, D.5
-
53
-
-
18144366601
-
Some estimates of norms of random matrices
-
R. Lata?a, Some estimates of norms of random matrices, Proc. Amer. Math. Soc., vol. 133, no. 5, pp. 1273-1282, 2005.
-
(2005)
Proc. Amer. Math. Soc
, vol.133
, Issue.5
, pp. 1273-1282
-
-
Lataa, R.1
-
55
-
-
0031075386
-
A parameter estimation scheme for damped sinusoidal signals based on low-rank hankel approximation
-
PII S1053587X97011872
-
Y. Li, K. J. R. Liu, and J. Razavilar, A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation, IEEE Trans. Signal Process., vol. 45, no. 2, pp. 481-486, Feb. 1997. (Pubitemid 127765912)
-
(1997)
IEEE Transactions on Signal Processing
, vol.45
, Issue.2
, pp. 481-486
-
-
Li, Y.1
Ray Liu, K.J.2
Razavilar, J.3
-
56
-
-
0000263239
-
Distribution of eigenvalues for some sets of random matrices
-
V. A. Marchenko and L. A. Pastur, Distribution of eigenvalues for some sets of random matrices, Matematicheskii Sbornik, vol. 114, no. 4, pp. 507-536, 1967.
-
(1967)
Matematicheskii Sbornik
, vol.114
, Issue.4
, pp. 507-536
-
-
Marchenko, V.A.1
Pastur, L.A.2
-
57
-
-
41049114357
-
Structured low-rank approximation and its applications
-
I. Markovsky, Structured low-rank approximation and its applications, Automatica, vol. 44, no. 4, pp. 891-909, 2008.
-
(2008)
Automatica
, vol.44
, Issue.4
, pp. 891-909
-
-
Markovsky, I.1
-
58
-
-
0002824680
-
Symmetric gauge functions and unitarily invariant norms
-
L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math., vol. 11, no. 1, pp. 50-59, 1960.
-
(1960)
Quart. J. Math
, vol.11
, Issue.1
, pp. 50-59
-
-
Mirsky, L.1
-
61
-
-
84860628853
-
Graph spectra and the detectability of community structure in networks
-
R. R. Nadakuditi and M. E. J. Newman, Graph spectra and the detectability of community structure in networks, Phys. Rev. Lett., vol. 108, no. 18, p. 188701, 2012.
-
(2012)
Phys. Rev. Lett
, vol.108
, Issue.18
, pp. 188701
-
-
Nadakuditi, R.R.1
Newman, M.E.J.2
-
62
-
-
84872503160
-
Spectra of random graphs with arbitrary expected degrees
-
R. R. Nadakuditi and M. E. J. Newman, Spectra of random graphs with arbitrary expected degrees, Phys. Rev. E, vol. 87, no. 1, p. 012803, 2013.
-
(2013)
Phys. Rev. e
, vol.87
, Issue.1
, pp. 012803
-
-
Nadakuditi, R.R.1
Newman, M.E.J.2
-
63
-
-
46749116893
-
Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples
-
Jul
-
R. R. Nadakuditi and A. Edelman, Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples, IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2625-2638, Jul. 2008.
-
(2008)
IEEE Trans. Signal Process
, vol.56
, Issue.7
, pp. 2625-2638
-
-
Nadakuditi, R.R.1
Edelman, A.2
-
64
-
-
77951177861
-
Nonparametric detection of signals by information theoretic criteria: Performance analysis and an improved estimator
-
May
-
B. Nadler, Nonparametric detection of signals by information theoretic criteria: Performance analysis and an improved estimator, IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2746-2756, May 2010.
-
(2010)
IEEE Trans. Signal Process
, vol.58
, Issue.5
, pp. 2746-2756
-
-
Nadler, B.1
-
66
-
-
70349835782
-
Testing hypotheses about the numbers of factors in large factor models
-
A. Onatski, Testing hypotheses about the numbers of factors in large factor models, Econometrica, vol. 77, no. 5, pp. 1447-1479, 2009.
-
(2009)
Econometrica
, vol.77
, Issue.5
, pp. 1447-1479
-
-
Onatski, A.1
-
67
-
-
78650967353
-
Determining the number of factors from empirical distribution of eigenvalues
-
A. Onatski, Determining the number of factors from empirical distribution of eigenvalues, Rev. Econ. Statist., vol. 92, no. 4, pp. 1004-1016, 2010.
-
(2010)
Rev. Econ. Statist
, vol.92
, Issue.4
, pp. 1004-1016
-
-
Onatski, A.1
-
68
-
-
84928499652
-
On determining the number of spikes in a high-dimensional spiked population model
-
D. Passemier and J.-F. Yao, On determining the number of spikes in a high-dimensional spiked population model, Random Matrices, Theory Appl., vol. 1, no. 1, p. 1150002, 2012.
-
(2012)
Random Matrices, Theory Appl
, vol.1
, Issue.1
, pp. 1150002
-
-
Passemier, D.1
Yao, J.-F.2
-
70
-
-
38549175880
-
Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
-
D. Paul, Asymptotics of sample eigenstructure for a large dimensional spiked covariance model, Statist. Sinica, vol. 17, no. 4, pp. 1617-1642, 2007.
-
(2007)
Statist. Sinica
, vol.17
, Issue.4
, pp. 1617-1642
-
-
Paul, D.1
-
71
-
-
59449098080
-
Universality results for the largest eigenvalues of some sample covariance matrix ensembles
-
S. Pch, Universality results for the largest eigenvalues of some sample covariance matrix ensembles, Probab. Theory Rel. Fields, vol. 143, nos. 3-4, pp. 481-516, 2009.
-
(2009)
Probab. Theory Rel. Fields
, vol.143
, Issue.3-4
, pp. 481-516
-
-
Pch, S.1
-
72
-
-
85006522418
-
Universality of covariance matrices
-
N. S. Pillai and J. Yin, Universality of covariance matrices, Oct. 2011.
-
(2011)
Oct
-
-
Pillai, N.S.1
Yin, J.2
-
73
-
-
79952902758
-
Estimation of high-dimensional lowrank matrices
-
A. Rohde and A. B. Tsybakov, Estimation of high-dimensional lowrank matrices, Ann. Statist., vol. 39, no. 2, pp. 887-930, 2011.
-
(2011)
Ann. Statist
, vol.39
, Issue.2
, pp. 887-930
-
-
Rohde, A.1
Tsybakov, A.B.2
-
75
-
-
84871560604
-
Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting
-
J. Saunderson, V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting, SIAM J. Matrix Anal. Appl., vol. 33, no. 4, pp. 1395-1416, 2012.
-
(2012)
SIAM J. Matrix Anal. Appl
, vol.33
, Issue.4
, pp. 1395-1416
-
-
Saunderson, J.1
Chandrasekaran, V.2
Parrilo, P.A.3
Willsky, A.S.4
-
76
-
-
0026260103
-
The SVD and reduced rank signal processing
-
L. L. Scharf, The SVD and reduced rank signal processing, Signal Process., vol. 25, no. 2, p. 113, 1991.
-
(1991)
Signal Process
, vol.25
, Issue.2
, pp. 113
-
-
Scharf, L.L.1
-
77
-
-
84876797915
-
Reconstruction of a low-rank matrix in the presence of Gaussian noise
-
Jul
-
A. A. Shabalin and A. B. Nobel, Reconstruction of a low-rank matrix in the presence of Gaussian noise, J. Multivariate Anal., vol. 118, pp. 67-76, Jul. 2013.
-
(2013)
J. Multivariate Anal
, vol.118
, pp. 67-76
-
-
Shabalin, A.A.1
Nobel, A.B.2
-
78
-
-
58149320175
-
Analysis of the limiting spectral distribution of large dimensional random matrices
-
J. W. Silverstein and S.-I. Choi, Analysis of the limiting spectral distribution of large dimensional random matrices, J. Multivariate Anal., vol. 54, no. 2, pp. 295-309, 1995.
-
(1995)
J. Multivariate Anal
, vol.54
, Issue.2
, pp. 295-309
-
-
Silverstein, J.W.1
Choi, S.-I.2
-
79
-
-
0141450345
-
A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices
-
A. Soshnikov, A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices, J. Statist. Phys., vol. 108, nos. 5-6, pp. 1033-1056, 2002.
-
(2002)
J. Statist. Phys
, vol.108
, Issue.5-6
, pp. 1033-1056
-
-
Soshnikov, A.1
-
80
-
-
79957510064
-
Recovering low-rank and sparse components of matrices from incomplete and noisy observations
-
M. Tao and X. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., vol. 21, no. 1, pp. 57-81, 2011.
-
(2011)
SIAM J. Optim
, vol.21
, Issue.1
, pp. 57-81
-
-
Tao, M.1
Yuan, X.2
-
82
-
-
0033556788
-
Mixtures of probabilistic principal component analyzers
-
M. E. Tipping and C. M. Bishop, Mixtures of probabilistic principal component analyzers, Neural Comput., vol. 11, no. 2, pp. 443-482, 1999.
-
(1999)
Neural Comput
, vol.11
, Issue.2
, pp. 443-482
-
-
Tipping, M.E.1
Bishop, C.M.2
-
83
-
-
0027574562
-
Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix
-
Apr
-
D. W. Tufts and A. A. Shah, Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix, IEEE Trans. Signal Process., vol. 41, no. 4, pp. 1716-1721, Apr. 1993.
-
(1993)
IEEE Trans. Signal Process
, vol.41
, Issue.4
, pp. 1716-1721
-
-
Tufts, D.W.1
Shah, A.A.2
-
84
-
-
58049218569
-
Dimension estimation in noisy PCA with SURE and random matrix theory
-
Dec
-
M. O. Ulfarsson and V. Solo, Dimension estimation in noisy PCA with SURE and random matrix theory, IEEE Trans. Signal Process., vol. 56, no. 12, pp. 5804-5816, Dec. 2008.
-
(2008)
IEEE Trans. Signal Process
, vol.56
, Issue.12
, pp. 5804-5816
-
-
Ulfarsson, M.O.1
Solo, V.2
-
87
-
-
84955127441
-
Sparse PCA: Convex relaxations, algorithms and applications
-
New York, NY, USA: Springer- Verlag
-
Y. Zhang, A. dAspremont, and L. El Ghaoui, Sparse PCA: Convex relaxations, algorithms and applications, in Handbook on Semidefinite, Conic and Polynomial Optimization. New York, NY, USA: Springer- Verlag, 2012, pp. 915-940.
-
(2012)
Handbook on Semidefinite, Conic and Polynomial Optimization
, pp. 915-940
-
-
Zhang, A.1
Daspremont, Y.2
El Ghaoui, L.3
-
88
-
-
0036018630
-
Low-rank approximations with sparse factors I: Basic algorithms and error analysis
-
Z. Zhang, H. Zha, and H. Simon, Low-rank approximations with sparse factors I: Basic algorithms and error analysis, SIAM J. Matrix Anal. Appl., vol. 23, no. 3, pp. 706-727, 2002.
-
(2002)
SIAM J. Matrix Anal. Appl
, vol.23
, Issue.3
, pp. 706-727
-
-
Zhang, Z.1
Zha, H.2
Simon, H.3
-
89
-
-
33745309913
-
Sparse principal component analysis
-
DOI 10.1198/106186006X113430
-
H. Zou, T. Hastie, and R. Tibshirani, Sparse principal component analysis, J. Comput. Graph. Statist., vol. 15, no. 2, pp. 265-286, 2006. (Pubitemid 43935978)
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, Issue.2
, pp. 265-286
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|